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Abstract: Considering the problem of the minimal triangulation for a given polyhedra 
(dividing polyhedra into tetrahedra) it is known that the cone triangulation provides the 
number of tetrahedra which is the smallest, or the closest to it. It is also shown that when 
we want to know whether the cone triangulation is the minimal one, it is necessary to 
find the order of all vertices, as well as the order of “separating circles”. Here, we will 
give algorithms for testing the necessary condition for the cone triangulation if it is the 
minimal one. The algorithm for forming the cone triangulation will also be given. 
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1. INTRODUCTION 

The division of any polygon with n-3 diagonals into n-2 triangles without gaps 
and overleaps is known. Such a division is called triangulation.  
 The generalization of this process to higher dimensions is also called 
triangulation. It divides a polyhedron (polytope) into tetrahedra (simplices). The problem 
of triangulation in higher dimensions is much more complicated. It is impossible to 
triangulate some nonconvex polyhedra [9] in three-dimensional space, and it is also 
proved that triangulations of the same polyhedron may lead to different numbers of 
tetrahedra [7], [10]. Considering the smallest and the largest number of tetrahedra in 
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triangulation (the minimal and the maximal triangulation, respectively), the authors 
obtained values, which linearly, resp. squarely depend on the number of vertices. Some 
characteristics of triangulation in three-dimensional space are given by Chin, Fung, 
Wang [5], Develin [6] and Stojanović [11, 12].  

This paper shall consider convex polyhedra with every 4 vertices noncoplanar, 
and all faces triangular. Furthermore, all considered triangulations are face to face. The 
number of edges from the same vertex will be called the order or degree of the vertex.  

Algorithms given in this paper test the necessary conditions for the cone 
triangulation, when it is the minimal one. An algorithm for forming the cone 
triangulation is also given. All these algorithms are based on graph presentation of the 
given polyhedron. A similar method for the presentation of polyhedra is given in [1, 3], 
for example. We have implemented some of these algorithms in C# and we are currently 
working on the implementation of others. 

It is known that establishing the minimal triangulation of convex polyhedra is an 
NP-hard problem [2, 5]. On the other hand, the algorithms for cone triangulation given in 
this paper are polynomial. The algorithms for testing the necessary conditions are 
polynomial as well. They give us the possibility to recognize the polyhedron for which is 
difficult to find minimal triangulation. Knowing the results of these algorithms in some 
of cases we consider improvements of cone triangulation, with the aim to get 
triangulation with small number of tetrahedra, close to number in the minimal one. 
 Theoretical results are summarized in Section 2. There are also introduced 
graphs and their applications to this problem. Abstract data type (ADT) of graph is 
presented [4, 8], including some elementary properties, and two main data structures for 
representing graphs are given. In Section 3 we will provide graph algorithms for testing 
conditions for establishing the degree of vertices and describe algorithm checking 
conditions for “separating circles”. Algorithms for finding triangular faces and for acting 
cone triangulation are given as well. These algorithms work on the graphs of polyhedron 
representations. Section 4 contains the conclusions of the paper. 
 

2. PRELIMINARIES 

2.1 Cone triangulation. One of the triangulations, which gives a small number of 
tetrahedra, is the cone triangulation [10] described as follows. 

One of the vertices is the common apex, which builds a tetrahedron with 
each triangular face of the polyhedron, except these containing apex.  

By Euler’s theorem, a polyhedron with n vertices has 2n-4 faces if all of them 
are triangular. Therefore, the number of tetrahedra in triangulation is 2n-10 at most, 
since, for n ≥ 12, each polyhedron has at least one vertex of order 6 or more. Sleator, 
Tarjan and Thurston in [10] considered some cases of “bad” polyhedra, which need a 
large number of tetrahedra for triangulation. It is proved, using hyperbolic geometry that 
the minimal number of triangulating tetrahedra is close to 2n-10. That value is tight for 
certain series of polyhedra, which exists for a sufficiently large n. Computer investigation 
of the equivalent problem of rotatory distance confirms, for 12 ≤ n ≤ 18, that there are 
polyhedra with the smallest necessary number of tetrahedra equal to 2n-10. This was the 
reason why the authors conjectured that the same statement is true for any n ≥ 12. To 
prove this hypothesis, it would be enough to check those cases where the cone 
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triangulation of polyhedra gives the smallest number of tetrahedra, and to show how to 
improve that in other cases. With this aim, in [10] the authors gave a polyhedron example 
which has vertices of great order and for which there exists a triangulation better than the 
cone one. They also gave advice on how to improve the method in this case and some 
similar cases. However, the polyhedra with vertices of great order give less than 2n-10 
tetrahedra in the cone triangulation, therefore, vertices of small order are considered in 
[11, 12]. The obtained results are as follows: 
 
Theorem 1. Let V be one of the vertices of a polyhedron P whose order is maximal. If the 
polyhedron P has a vertex of order 3 not connected with V, or a sequence of at least 2 
vertices of order 4 connected with a chain, each of them not connected with V, then the 
cone triangulation of P with apex V will not give the smallest number of tetrahedra.  
 
Remark: When V is connected with a vertex at the end of the chain, the cone 
triangulation is not the minimal one whenever the chain contains at least 3 vertices.  
 

Apart from the order of vertices, it is also necessary to consider the order of 
separating circle. Let us define the following:  
• A circle of p vertices of the polyhedron P is a p-sided closed polygon A1, A2, ... , Ap 
where Ai (i = 1, ... , p) are different vertices of P and AiAi+1 (i = 1, ... , p-1), ApA1 are 
edges of P. 
• Let c be a circle on the polyhedron P, moreover M and N two vertices of P different 
from Ai. If all paths on P with end points M and N pass through some of the vertices Ai, 
then we say that a separating circle c separates M and N. We also say that M and N are 
on the different sides of c. If the circle c does not separate the vertices M and N, they are 
on the same side of the circle. 
 
Theorem 2. If a polyhedron contains a circle of p vertices, which separates vertices A 
and B of order v(A) and v(B), where v(A) ≥ v(B) > p, then the cone triangulation with 
apex A is not the minimal one. 
 

The consequence of the theorems is that the candidates for the minimal 
triangulation with 2n-10 tetrahedra are polyhedra with all vertices of order 5 or 6, 
occasionally some of order 4 which are not connected between themselves, and with 
separating circles of order six or more. 

The condition for the order of circles is considered in [13]. Finding separating 
circles is performed in two steps. 

First of all, it is necessary to find the series of neighbor circles in the following 
way: begin with a vertex of the polyhedron and take all its neighbor vertices. They are 
connected to form a circle – the first one in series. The new neighbor vertices of those in 
the first circle form the second circle. The third circle is formed from new neighbors of 
the vertices of the second circle, and so on. The process is finished when there are no 
unused neighbors of the vertices of the last circle. The last circle may be degenerate to a 
single vertex or a chain. 

If all of the neighbor circles in this series (except may be the first and the last 
one) are of order six or more, then we are searching for a circle of smaller order. 
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It is shown in [13] ] that if we require vertices to have order not greater than six, 
then the only possible case is a circle with vertices A1, A2, A3 which lie on p and A4, A5 on 
q, while p, q are neighbor circles. Apart from that, the circle p has to be of order six and 
the new (separate) circle A1A2A3A4A5 have to separate other vertices of p from those of q.  

 
2.2 Graph representation. In this paper, the graph structure is used as a model for 
polyhedron representation [1]. Here, vertices and edges of a polyhedron are used as 
vertices and edges of the appropriate graph, while faces and solid are ignored. Graph 
provides a more natural and consistent approach for this class of algorithms. 

 Viewed abstractly, a graph G = (V, E) consists of the set V of vertices and the 
set E of edges connecting the vertices in V. An edge e = (u, v) is a pair of two vertices u 
and v. The vertices u and v are called endpoints of the edge (u, v).  

The abstract data type (ADT) is a mathematical model of a data structure that 
specifies a type of data stored, the operations supported on them, and the types of 
parameters of the operations. The ADT specifies what each operation does, but it does 
not describe the way it is done. 

As an abstract data type, a graph is a positional container whose positions are its 
vertices and its edges. Hence, the graph ADT stores elements at either its edges or 
vertices (or both). A position in the graph is always defined relatively, that is, in terms of 
its neighbors. 

To make the ways of storing elements abstract and unified, in various 
implementations of the graph, we introduce a concept of “a position” in the graph, which 
makes the intuitive notion of the “place” element formal, relative to others in the graph. 

A position itself is an abstract data type that supports a simple element() method 
which returns the element that is stored at this position. We also use specialized iterators 
for vertices and edges. An iterator is an enumeration with traversal order which can be 
guaranteed in some way. In order to simplify the presentation, we denote a vertex 
position with v, and an edge position with e. 

There are admittedly numerous methods for the graph ADT. However, some 
methods are unavoidable to a certain extent, since graphs are rich structures. We need 
different methods for accessing and updating some positions in a graph, as well as 
dealing with the relationships that can exist between these positions. We divide the graph 
methods into three main categories: general methods, accessor methods and methods for 
updating and modifying graphs. We do not discuss error conditions that may occur. In 
addition, we take into consideration only methods for dealing with undirected edges. 

We begin by describing fundamental methods for the graph, which ignore the 
direction of the edges. Each of the following methods returns global information about a 
graph G: 

 
 
 
 

numVertices() Return the number of vertices in G 
numEdges() Return the number of edges in G 
vertices(): Return an iterator of the vertices of G 
edges() Return an iterator of the edges of G 
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The following accessor methods take vertex and edge positions as arguments: 

degree(v) Return the degree of v 
adjacentVertices(v) Return an iterator of the vertices 

adjacent to v 
incidentEdges(v) Return an iterator of the edges 

incident upon v 
opposite(v,e) Return the endpoint of edge e distinct 

from v 
areAdjacent(v,w) Return whether vertices v and w are 

adjacent 
 
We can also allow methods for updating which add or delete edges and vertices: 
 
insertEdge(v,w) Insert and return an undirected edge 

between vertices v and w 
insertVertex(v) Insert and return a new (isolated) 

numbering vertex v storing the object o at 
this position 

removeVertex(v) Remove vertex v and all its incident edges 
removeEdge(e) Remove edge e 
 

In order to perform graph algorithms in a computer, we have to decide how to 
store a graph. There are several ways to realize the graph ADT with a concrete data 
structure. In this section, we discuss two popular approaches, usually referred to as the 
adjacency list structure and the adjacency matrix [4, 8].  

There is a fundamental difference between the adjacency list and the adjacency 
matrix. The adjacency list structure only stores the edges actually present in the graph, 
while the adjacency matrix stores a placeholder for every pair of vertices (whether there 
is an edge between them or not). This difference implies that, for a graph G with n 
vertices and m edges, the edge list or adjacency list representation uses O(n + m) space, 
whereas the adjacency matrix representation uses O(n2) space. 

In modern object-oriented program languages, (such as C# and Java) the ADT 
can be expressed by an interface, which is simply a list of method declarations. The ADT 
is realized by a concrete data structure, which is modeled in object-oriented program 
languages by a class. A class defines the data stored and the operations supported by the 
objects which are instances of the class. Also, unlike interfaces, classes specify how the 
operations are performed. A Java class is said to implement an interface if its methods 
give life to all of those of the interface. 
 
 

3. ALGORITHMS FOR CONE TRIANGULATION  

3.1 The first two algorithms are the testing conditions of Theorem 1. Since priority queue 
is used, they give us the possibility of efficient implementation and significantly reduce 
running time. A pseudo-code for this first algorithm is given in the code fragment shown 
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below. The input to the algorithm is an undirected graph G with n vertices. The output is 
a lists storing the incident edges on a vertex v0, v1, ..., vn. 

Note that the algorithm uses a priority queue ADT Q to store the vertices in G 
with their degrees as keys. In each iteration of the outer for loop, we put the current 
vertex and its degree into priority queue Q. This ADT allows us to later extract vertices 
from Q in nondecreasing order by their degrees.  

Therefore, at each iteration of the while loop, algorithm extracts the vertex vi 
with the smallest degree (call to the priority queue removeMin method) and finds its 
incident edges (call to graph incidentEdges method). Also, the algorithm puts each found 
edge incident to the current vertex vi into list Li (call to list InsertLast method). 
 
Algorithm1:Finding the order for each  vertex of a graph G 
and all incident edges for it  
  Input:  A undirected graph G with n vertices 

Output: The lists L0,L1,... Ln store the incident 
edges on a vertex v0, v1 and so on  
 
Let Q be an initially empty priority queue; 
for each vertex v in G.vertices()  { 
    Q.insertItem (G.degree(v), v);  // insert a vertex v  
with degree of v as key into Q 
} 
i = 0; 
while Q is not empty  
{      Let Li be an initially empty list; 
       d = Q.minKey();   //  returns the smallest key 
in Q 
       v = Q.removeMin();  // removes from Q and 
returns vertex v with  the smallest key 
       writeLine ( “vertex: {0}   degree: {1} “,v, d); 
       writeLine(“incident edges on vertex”); 
       for each edge e in G.incidentEdges(v) 
      {      w = G.opposite (v,e);   // return the 
endpoint of edge e distinct from v  
            write (“ ( {0}, {1} ) “,v, w ); 
           Li.insertLast((v,w)); // insert incident edge 
(v,w) on vertex v into Li  as last element    
      } 
     i++; 
} return L0, L1, …, Ln; 
Figure 1. Pseudo-code for finding the degrees of all vertices and their incident edges  
 
Example 1. 
The undirected graph G with six vertices, shown below, is used as algorithm’s input.  
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Figure 2. The graph – input to the algorithm 
 

The algorithm generates following output: 
 
Vertex: 5   Degree: 3 
Incident edges on vertex: 
(5,1) (5,2) (5,3) 
  
Vertex: 6  Degree: 3 
Incident edges on vertex: 
(6,1) (6,3) (6,4) 
  
Vertex: 1  Degree: 4 
Incident edges on vertex: 
(1,2) (1,4) (1,5) (1,6) 
  
Vertex: 2  Degree: 4 
 . 
 . 
 
3.2 In the second algorithm, we consider the problem of finding connected vertices in an 
undirected graph G where each of the vertices has the same order. In the case of Theorem 
1, order d=4 is of interest, but algorithm is more general. The pseudo-code description of 
the algorithm is given in Figure 3. 

Input to the algorithm is the undirected graph G with n vertices and specified 
degree d. The algorithm forms, as output, list L that contains all connected vertices in G 
where each of them has the same order.  

In each iteration of the outer for loop, we start with a new vertex v and check its 
degree. If the degree of the vertex v is equal to a specified order d, then we find all the 
vertices adjacent to vertex v, (call to graph adjacentVertices method). In fact, in each 
iteration of the inner loop we check the degree for each vertex u found, (u is adjacent to 
v), in order to determine if the connected edge (v,u) should be added to the list L. 
 
Algorithm2:For finding connected vertices of the same order 
 Input:   A graph G and specified degree d  
 Output:  List L  
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Let L be an initially empty list; 
for each vertex v in G.vertices() 
{     if ( G.degree(v) == d) then 
 for each vertex u in G.adjacentVertices(v)  
 { if (G.degree(u) == d) then   
  L.insertLast ((v,u));   // insert edge (v,u) 
into L 
 } 
} 
if  L is not empty  
{   writeLine (“ specified order{0}”, d); 
 writeLine(“ connected vertices: ”); 
 for each edge (v,w) in L.elements() {   
  write (“ ( {0}, {1} ) ”,v, w ); 
    } 
 writeLine(); 
  }  return L 

Figure 3. Pseudo-code for finding connected vertices of the same order 
 
Example  2. 

The input to the algorithm is the graph shown in Figure 2 (see previous section).  
This algorithm formes following output: 

 
Specified order: 4 
connected vertices: 
(1,2) (1,4) (2,1) (2,3) (2,4)  
(3,2) (3,4) (4,1) (4,2) (4,3) 
 
3.3 The conditions of Theorem 2 are tested in algorithms given in [13]. Here, only short 
descriptions and examples are presented to complete the investigation. In testing these 
conditions, one algorithm forms neighbor circles, while the other one forms inserted 
circles.  

The input to the algorithm for forming neighbor circles is an undirected graph G 
with n vertices and a specific starting vertex s ∈ G. This algorithm forms circles C0, 
C1,…, Cm and lists L0, L1,…,Lm-1. Each Ci represents neighbor circle. Each list Li contains 
the edges which connect pairs (u,v) of vertices, where u ∈ Ci  and v ∈ Ci+1. 
 
1. We begin with initializing the graph (circle) C0,  so it contains a specific vertex s.  
2. In each iteration, the algorithm forms a new graph (circle) Ci+1 and a new list Li. The 

process is repeated until the graph G becomes empty. 
3. For each vertex w ∈ Ci we find its incident edges in graph G. Algorithm for each 

discovered edge (w,q)  
i. insert SITS endpoint q to graph Ci+1  
ii. inserts edge (w,q) to the list Li 

iii. removes edge (w,q) from the graph G. 
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4. Algorithm for each vertex w ∈ Ci+1 finds all vertices in G, adjacent to vertex w; for 
each found vertex v ∈ G adjacent to w, we check if v is in Ci+1.  If vertex v ∈ Ci+1,  
then edge (w,v) is inserted in Ci+1. 

5. When Ci+1 is formed, all edges in Ci+1 are removed from G. 
  
Example: 

An undirected graph G with 14 vertices, shown below, and vertex B5, are used 
as algorithm input.   

 

B5

B1

B2B3

B4

A1

A2

A3
A4

A5

C1 C4

C3C2

 
 

Figure 4.  Input to the algorithm 
 
The algorithm has generated the following output: 
 
formed neighbor circles: 

 ordinal number of circle:  0      degree of circle: 1 
 vertices of circle:  B5 
 edges of  circle:   
 edges that connect two adjacent circles  C0  and C1: 
  (B5,B1) (B5,B2) (B5,B3) (B5,B4) 
 
 ordinal number of circle:  1      degree of circle:  4 
  vertices of circle:  B1, B2, B3, B4, 
  edges of  circle:   (B1,B2) (B2,B3) (B3,B4) (B4,B1) 
edges that connect two adjacent circles C1 and C2: 
  (B1,A1) (B1,A2) (B1,A5) (B2,A2) (B2,A3) (B3,A3)  
  (B3,A4) (B4,A4) (B4,A5) 
 ordinal number of circle:  2      degree of circle: 5 
 . . . . . . . .  
 ordinal number of circle:  3      degree of circle: 4 
 . . . . . . . .   

 



 M.Stojanović, M.Vučković /Convex polyhedra with triangular faces  88 

 
The input to the algorithm for forming inserted circles are graphs C0, C1,…,Cm 

and  lists L0, L1,…,Lm-1, which are formed by the precedent algorithm.  Each graph Ci 
represents a neighbor circle. Each list Li stores the edges which connect the pairs (u,v) of 
vertices, where u ∈ Ci  and v ∈ Ci+1.  

 
1. Algorithm begins with process traverses circles (graphs) C0, C1, … ,Cm by 

considering the order of each graph.  
2. If algorithm finds a graph  Ci of order six, then 

• for each vertex v∈ Ci   
2.1 finds its  two adjacency vertices x and y in Ci   
 
2.2 adds vertices v, x, y to temporary queue Q 

 
2.3 calls algorithm, for finding two vertices w and q in circle Ci-1 

neighbor to Ci, such that vertex w connects with vertex x ∈ Ci, as 
vertex q connects with vertex y ∈ Ci. Vertex w also has to be adjacent 
to vertex q, and v has to not be adjacent to w or q. Algorithm returns 
queue D that contains five vertices of the inserted circle, which is 
formed.  

 
2.4 calls algorithm for forming inserted circle. The input in this 
algorithm is queue D and a new empty graph Pk. The algorithm output 
formed an inserted circle Pk of order five.  
       

2.5 Furthermore, the main algorithm repeats the above steps 2.3 and 2.4 
for circle Ci+1 neighbor to Ci. 

3. The above process repeats while circles Ci of order six exist. 
4. When the process is terminated, the algorithm returns inserted circles P0, P1, …, Pk. 
 
Example 3. 

Input to this algorithm is the polyhedron shown in Figure 5, with neighbor 
circles A01; A11, A12, A13, A14, A15, A16; A21, A22, A23, A24, A25, A26; A31 and edges that 
connect two adjacent circles: A01A11, A01A12, A01A13, A01A14, A01A15, A01A16; A11A21, A12A21, 
A12A22, A12A23, A13A23, A13A24, A14 A24, A14 A25, A14A26, A15A26, A16A26, A16A21; A21A31, 
A22A31, A23A31, A24A31, A25A31, A26A31. 
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Figure 5. Input to the algorithm 
 
The algorithm generates the following output: 
 
ordinal number of inserted circle:   0 
edges of inserted  circle: 
(A13,A14)  (A13,A12)  (A14,A26)  (A12,A21)  (A26,A21)  
 
 
3.4 The first step in doing cone triangulation is finding triangular faces of graph, 
representing given polyhedron. This is necessary, since the data on faces are omitted in 
this representation. 
 

The input to the algorithm is an undirected graph G with n vertices. The 
algorithm forms list T, as the output, which contains triangular faces. The pseudo-code 
description of the main algorithm is given in Figure 6.  

In each iteration of the outer for loop, the algorithm  starts with a new vertex u 
and finds its incident edges (call to graph incidentEdges method). Also, for each found 
edge (u, v) incident to the current vertex u,  the algorithm finds all the vertices adjacent to 
vertex u (call to graph adjacentVertices method).   

For each vertex w found, (w adjacent to the vertex u), the algorithm checks if the 
vertices w and v are adjacent, in order to determine if the new triangular (u, v, w) should 
be added to the list T, (call to list InsertLast method). Finally, algorithm processed edge 
(u,v), removes from the graph G. 

When the process is finished, the algorithm returns the formed list T, which 
contains the found triangular faces. 
 
 
 
Algorithm3:For finding triangular faces 
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  Input:   A undirected graph G with n vertices 
Output:  List T 

 
Let T be an initially empty list; 
 
for each vertex u  in G.vertices()  { 
  for each edge e in G.incidentEdges(u) 
       {       v = G.opposite (u,e);   // 
return the endpoint of edge e distinct from u 
            for each vertex w  in G.adjacentVertex(u) 
{ 
   if  G.areAdjacent(v,w) then 

          T.InsertLast((u,v,w)); // 
insert a new triple (u, v, w) into list T  
        } 
   
  G.removeEdge((u,v)); //remove edge (u,v) from G 
 } 
  } 
writeLine(“formed triangular faces”); 
for each triple (u,v,w)  in T.elements() {        
            write (“ T ( {0}, {1}, {2}  ) ” u,v,w ); 
} return T 

Figure 6. Pseudo-code for forming triangular faces 
 
Example 4. 

An undirected graph G shown in figure 4 is used as algorithm input. We may 
assume that vertices are given in the following order: A1, A2, A3, A4, A5, B1, B2, B3, B4, B5, 
C1, C2, C3, C4 and edgese in corresponding: A1A2, A1A5, A1B1, A1C1, A1C4, A2A3, A2B1, 
A2B2, A2C3, A2C4, A3A4, A3B2, A3B3, A3C2, A3C3, A4A5, A4B3, A4B4, A4C1, A4C2, A5B1, A5B4, 
A5C1, B1B2, B1B4, B1B5, B2B3, B2B5, B3B4, B3B5, B4B5, C1C2, C1C3, C1C4, C2C3, C3C4. 
Then, in the output, triangular faces are in the following order:   
T(A1, A2, B1), T(A1, A2, C4), T(A1, A5, B1), T(A1, A5, C1), T(A1, C1, C4), T(A2, A3, B2), T(A2, 
A3, C3), T(A2, B1, B2), T(A2, C3, C4), T(A3, A4, B3), T(A3, B4, C2), T(A3, B2, B3), T(A3, C2, 
C3), T(A4, A5, B4), T(A4, A5, C1), T(A4, B3, B4), T(A4, C1, C2), T(A5, B1, B4), T(B1, B2, B5), 
T(B1, B4, B5), T(B2, B3, B5), T(B3, B4, B5), T(C1, C2, C3), T(C1, C3, C4). 
 
3.5 The final algorithm serves for the purpose of making cone triangulation. 
 

The inputs to the algorithm are the list T, which is formed by the previous 
algorithm for finding triangular faces, and a particular vertex q, which represents the 
apex of the triangulation. The algorithm forms list S as output, that contains the found 
tetrahedra. The pseudo-code description of the main algorithm is given in Figure 7. 

In each iteration of the first for loop, the algorithm checks if the triangular face 
from the list T contains a particular apex q.  In case the triangular face does not contain a 
particular apex q, the apex q is added as a fourth vertex, so the tetrahedron formed this 
way is added to the list S. 
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Algorithm4:For cone triangulation 

Input:  List T and particular vertex q 
 Output: List S  
 
Let S be an initially empty list; 
 
for each triple (u,v,w) in T.elements() {     
       if not ( (u == q) or (v == q) or (w == q) )   then    

S.InsertLast((q,u,v,w)); // Insert a new tetrahedron 
(q,u,v,w) into list S  
} 
writeLine(“formed tetrahedra”); 
for each tetrahedron (q,u,v,w)  in S.elements() {     
   
            write (“ S ( {0}, {1}, {2}, {3} ) “ q,u,v,w ); 
} return S 

Figure 7. Pseudo-code for cone triangulation  

Example 5. 
If in the previous example, with graph G given in figure 4, the particular vertex 

is A2, then the output is a list of tetrahedra given in the following order:  
S(A1, A5, B1, A2), S(A1, A5, C1, A2), S(A1, C1, C4, A2),S(A3, A4, B3, A2),S(A3, B4, C2, A2), 
S(A3, B2, B3, A2), S(A3, C2, C3, A2), S(A4, A5, B4, A2), S(A4, A5, C1, A2),S(A4, B3, B4, A2), 
S(A4, C1, C2, A2), S(A5, B1, B4, A2), S(B1, B2, B5, A2), S(B1, B4, B5, A2), S(B2, B3, B5, A2), 
S(B3, B4, B5, A2), S(C1, C2, C3, A2), S(C1, C3, C4, A2). 
 

4. CONCLUSIONS 

In the paper are given algorithms for cone triangulation which are polynomial. 
That is significant, since finding minimal triangulation of convex polyhedra is an NP-
hard problem and cone triangulation provides close number of tetrahedra. The algorithms 
for testing necessary conditions, given in this paper, are polynomial as well.  

Knowing the results of algorithms for necessary conditions along with the 
results given in [13], we can consider improvements of cone triangulation. The proposed 
approach can also be extended for the purpose of solving similar geometric problems. 
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