
Yugoslav Journal of Operations Research
21 (2011), Number 1, 79-92
DOI: 10.2298/YJOR1101079S

CONVEX POLYHEDRA WITH TRIANGULAR FACES AND
CONE TRIANGULATION

Milica STOJANOVIĆ
Faculty of Organizational Sciences, Belgrade, Serbia

milicas@fon.bg.ac.rs

Milica VUČKOVIĆ
Faculty of Organizational Sciences, Belgrade,Serbia

milica@fon.bg.ac.rs

Received: December 2010 / Accepted: May 2011

Abstract: Considering the problem of the minimal triangulation for a given polyhedra
(dividing polyhedra into tetrahedra) it is known that the cone triangulation provides the
number of tetrahedra which is the smallest, or the closest to it. It is also shown that when
we want to know whether the cone triangulation is the minimal one, it is necessary to
find the order of all vertices, as well as the order of “separating circles”. Here, we will
give algorithms for testing the necessary condition for the cone triangulation if it is the
minimal one. The algorithm for forming the cone triangulation will also be given.

Keywords: Triangulation of polyhedra, minimal triangulation, graph algorithms, abstract data type
of graph.

MSC: Primary: 52C17, 68R10; Secondary: 52B05, 05C85, 68P05, 68Q65

1. INTRODUCTION

The division of any polygon with n-3 diagonals into n-2 triangles without gaps
and overleaps is known. Such a division is called triangulation.
 The generalization of this process to higher dimensions is also called
triangulation. It divides a polyhedron (polytope) into tetrahedra (simplices). The problem
of triangulation in higher dimensions is much more complicated. It is impossible to
triangulate some nonconvex polyhedra [9] in three-dimensional space, and it is also
proved that triangulations of the same polyhedron may lead to different numbers of
tetrahedra [7], [10]. Considering the smallest and the largest number of tetrahedra in

 M.Stojanović, M.Vučković /Convex polyhedra with triangular faces 80

triangulation (the minimal and the maximal triangulation, respectively), the authors
obtained values, which linearly, resp. squarely depend on the number of vertices. Some
characteristics of triangulation in three-dimensional space are given by Chin, Fung,
Wang [5], Develin [6] and Stojanović [11, 12].

This paper shall consider convex polyhedra with every 4 vertices noncoplanar,
and all faces triangular. Furthermore, all considered triangulations are face to face. The
number of edges from the same vertex will be called the order or degree of the vertex.

Algorithms given in this paper test the necessary conditions for the cone
triangulation, when it is the minimal one. An algorithm for forming the cone
triangulation is also given. All these algorithms are based on graph presentation of the
given polyhedron. A similar method for the presentation of polyhedra is given in [1, 3],
for example. We have implemented some of these algorithms in C# and we are currently
working on the implementation of others.

It is known that establishing the minimal triangulation of convex polyhedra is an
NP-hard problem [2, 5]. On the other hand, the algorithms for cone triangulation given in
this paper are polynomial. The algorithms for testing the necessary conditions are
polynomial as well. They give us the possibility to recognize the polyhedron for which is
difficult to find minimal triangulation. Knowing the results of these algorithms in some
of cases we consider improvements of cone triangulation, with the aim to get
triangulation with small number of tetrahedra, close to number in the minimal one.
 Theoretical results are summarized in Section 2. There are also introduced
graphs and their applications to this problem. Abstract data type (ADT) of graph is
presented [4, 8], including some elementary properties, and two main data structures for
representing graphs are given. In Section 3 we will provide graph algorithms for testing
conditions for establishing the degree of vertices and describe algorithm checking
conditions for “separating circles”. Algorithms for finding triangular faces and for acting
cone triangulation are given as well. These algorithms work on the graphs of polyhedron
representations. Section 4 contains the conclusions of the paper.

2. PRELIMINARIES

2.1 Cone triangulation. One of the triangulations, which gives a small number of
tetrahedra, is the cone triangulation [10] described as follows.

One of the vertices is the common apex, which builds a tetrahedron with
each triangular face of the polyhedron, except these containing apex.

By Euler’s theorem, a polyhedron with n vertices has 2n-4 faces if all of them
are triangular. Therefore, the number of tetrahedra in triangulation is 2n-10 at most,
since, for n ≥ 12, each polyhedron has at least one vertex of order 6 or more. Sleator,
Tarjan and Thurston in [10] considered some cases of “bad” polyhedra, which need a
large number of tetrahedra for triangulation. It is proved, using hyperbolic geometry that
the minimal number of triangulating tetrahedra is close to 2n-10. That value is tight for
certain series of polyhedra, which exists for a sufficiently large n. Computer investigation
of the equivalent problem of rotatory distance confirms, for 12 ≤ n ≤ 18, that there are
polyhedra with the smallest necessary number of tetrahedra equal to 2n-10. This was the
reason why the authors conjectured that the same statement is true for any n ≥ 12. To
prove this hypothesis, it would be enough to check those cases where the cone

 M.Stojanović, M.Vučković /Convex polyhedra with triangular faces 81

triangulation of polyhedra gives the smallest number of tetrahedra, and to show how to
improve that in other cases. With this aim, in [10] the authors gave a polyhedron example
which has vertices of great order and for which there exists a triangulation better than the
cone one. They also gave advice on how to improve the method in this case and some
similar cases. However, the polyhedra with vertices of great order give less than 2n-10
tetrahedra in the cone triangulation, therefore, vertices of small order are considered in
[11, 12]. The obtained results are as follows:

Theorem 1. Let V be one of the vertices of a polyhedron P whose order is maximal. If the
polyhedron P has a vertex of order 3 not connected with V, or a sequence of at least 2
vertices of order 4 connected with a chain, each of them not connected with V, then the
cone triangulation of P with apex V will not give the smallest number of tetrahedra.

Remark: When V is connected with a vertex at the end of the chain, the cone
triangulation is not the minimal one whenever the chain contains at least 3 vertices.

Apart from the order of vertices, it is also necessary to consider the order of
separating circle. Let us define the following:
• A circle of p vertices of the polyhedron P is a p-sided closed polygon A1, A2, ... , Ap
where Ai (i = 1, ... , p) are different vertices of P and AiAi+1 (i = 1, ... , p-1), ApA1 are
edges of P.
• Let c be a circle on the polyhedron P, moreover M and N two vertices of P different
from Ai. If all paths on P with end points M and N pass through some of the vertices Ai,
then we say that a separating circle c separates M and N. We also say that M and N are
on the different sides of c. If the circle c does not separate the vertices M and N, they are
on the same side of the circle.

Theorem 2. If a polyhedron contains a circle of p vertices, which separates vertices A
and B of order v(A) and v(B), where v(A) ≥ v(B) > p, then the cone triangulation with
apex A is not the minimal one.

The consequence of the theorems is that the candidates for the minimal
triangulation with 2n-10 tetrahedra are polyhedra with all vertices of order 5 or 6,
occasionally some of order 4 which are not connected between themselves, and with
separating circles of order six or more.

The condition for the order of circles is considered in [13]. Finding separating
circles is performed in two steps.

First of all, it is necessary to find the series of neighbor circles in the following
way: begin with a vertex of the polyhedron and take all its neighbor vertices. They are
connected to form a circle – the first one in series. The new neighbor vertices of those in
the first circle form the second circle. The third circle is formed from new neighbors of
the vertices of the second circle, and so on. The process is finished when there are no
unused neighbors of the vertices of the last circle. The last circle may be degenerate to a
single vertex or a chain.

If all of the neighbor circles in this series (except may be the first and the last
one) are of order six or more, then we are searching for a circle of smaller order.

 M.Stojanović, M.Vučković /Convex polyhedra with triangular faces 82

It is shown in [13]] that if we require vertices to have order not greater than six,
then the only possible case is a circle with vertices A1, A2, A3 which lie on p and A4, A5 on
q, while p, q are neighbor circles. Apart from that, the circle p has to be of order six and
the new (separate) circle A1A2A3A4A5 have to separate other vertices of p from those of q.

2.2 Graph representation. In this paper, the graph structure is used as a model for
polyhedron representation [1]. Here, vertices and edges of a polyhedron are used as
vertices and edges of the appropriate graph, while faces and solid are ignored. Graph
provides a more natural and consistent approach for this class of algorithms.

 Viewed abstractly, a graph G = (V, E) consists of the set V of vertices and the
set E of edges connecting the vertices in V. An edge e = (u, v) is a pair of two vertices u
and v. The vertices u and v are called endpoints of the edge (u, v).

The abstract data type (ADT) is a mathematical model of a data structure that
specifies a type of data stored, the operations supported on them, and the types of
parameters of the operations. The ADT specifies what each operation does, but it does
not describe the way it is done.

As an abstract data type, a graph is a positional container whose positions are its
vertices and its edges. Hence, the graph ADT stores elements at either its edges or
vertices (or both). A position in the graph is always defined relatively, that is, in terms of
its neighbors.

To make the ways of storing elements abstract and unified, in various
implementations of the graph, we introduce a concept of “a position” in the graph, which
makes the intuitive notion of the “place” element formal, relative to others in the graph.

A position itself is an abstract data type that supports a simple element() method
which returns the element that is stored at this position. We also use specialized iterators
for vertices and edges. An iterator is an enumeration with traversal order which can be
guaranteed in some way. In order to simplify the presentation, we denote a vertex
position with v, and an edge position with e.

There are admittedly numerous methods for the graph ADT. However, some
methods are unavoidable to a certain extent, since graphs are rich structures. We need
different methods for accessing and updating some positions in a graph, as well as
dealing with the relationships that can exist between these positions. We divide the graph
methods into three main categories: general methods, accessor methods and methods for
updating and modifying graphs. We do not discuss error conditions that may occur. In
addition, we take into consideration only methods for dealing with undirected edges.

We begin by describing fundamental methods for the graph, which ignore the
direction of the edges. Each of the following methods returns global information about a
graph G:

numVertices() Return the number of vertices in G
numEdges() Return the number of edges in G
vertices(): Return an iterator of the vertices of G
edges() Return an iterator of the edges of G

 M.Stojanović, M.Vučković /Convex polyhedra with triangular faces 83

The following accessor methods take vertex and edge positions as arguments:

degree(v) Return the degree of v
adjacentVertices(v) Return an iterator of the vertices

adjacent to v
incidentEdges(v) Return an iterator of the edges

incident upon v
opposite(v,e) Return the endpoint of edge e distinct

from v
areAdjacent(v,w) Return whether vertices v and w are

adjacent

We can also allow methods for updating which add or delete edges and vertices:

insertEdge(v,w) Insert and return an undirected edge

between vertices v and w
insertVertex(v) Insert and return a new (isolated)

numbering vertex v storing the object o at
this position

removeVertex(v) Remove vertex v and all its incident edges
removeEdge(e) Remove edge e

In order to perform graph algorithms in a computer, we have to decide how to
store a graph. There are several ways to realize the graph ADT with a concrete data
structure. In this section, we discuss two popular approaches, usually referred to as the
adjacency list structure and the adjacency matrix [4, 8].

There is a fundamental difference between the adjacency list and the adjacency
matrix. The adjacency list structure only stores the edges actually present in the graph,
while the adjacency matrix stores a placeholder for every pair of vertices (whether there
is an edge between them or not). This difference implies that, for a graph G with n
vertices and m edges, the edge list or adjacency list representation uses O(n + m) space,
whereas the adjacency matrix representation uses O(n2) space.

In modern object-oriented program languages, (such as C# and Java) the ADT
can be expressed by an interface, which is simply a list of method declarations. The ADT
is realized by a concrete data structure, which is modeled in object-oriented program
languages by a class. A class defines the data stored and the operations supported by the
objects which are instances of the class. Also, unlike interfaces, classes specify how the
operations are performed. A Java class is said to implement an interface if its methods
give life to all of those of the interface.

3. ALGORITHMS FOR CONE TRIANGULATION

3.1 The first two algorithms are the testing conditions of Theorem 1. Since priority queue
is used, they give us the possibility of efficient implementation and significantly reduce
running time. A pseudo-code for this first algorithm is given in the code fragment shown

 M.Stojanović, M.Vučković /Convex polyhedra with triangular faces 84

below. The input to the algorithm is an undirected graph G with n vertices. The output is
a lists storing the incident edges on a vertex v0, v1, ..., vn.

Note that the algorithm uses a priority queue ADT Q to store the vertices in G
with their degrees as keys. In each iteration of the outer for loop, we put the current
vertex and its degree into priority queue Q. This ADT allows us to later extract vertices
from Q in nondecreasing order by their degrees.

Therefore, at each iteration of the while loop, algorithm extracts the vertex vi
with the smallest degree (call to the priority queue removeMin method) and finds its
incident edges (call to graph incidentEdges method). Also, the algorithm puts each found
edge incident to the current vertex vi into list Li (call to list InsertLast method).

Algorithm1:Finding the order for each vertex of a graph G
and all incident edges for it
 Input: A undirected graph G with n vertices

Output: The lists L0,L1,... Ln store the incident
edges on a vertex v0, v1 and so on

Let Q be an initially empty priority queue;
for each vertex v in G.vertices() {
 Q.insertItem (G.degree(v), v); // insert a vertex v
with degree of v as key into Q
}
i = 0;
while Q is not empty
{ Let Li be an initially empty list;
 d = Q.minKey(); // returns the smallest key
in Q
 v = Q.removeMin(); // removes from Q and
returns vertex v with the smallest key
 writeLine (“vertex: {0} degree: {1} “,v, d);
 writeLine(“incident edges on vertex”);
 for each edge e in G.incidentEdges(v)
 { w = G.opposite (v,e); // return the
endpoint of edge e distinct from v
 write (“ ({0}, {1}) “,v, w);
 Li.insertLast((v,w)); // insert incident edge
(v,w) on vertex v into Li as last element
 }
 i++;
} return L0, L1, …, Ln;
Figure 1. Pseudo-code for finding the degrees of all vertices and their incident edges

Example 1.
The undirected graph G with six vertices, shown below, is used as algorithm’s input.

 M.Stojanović, M.Vučković /Convex polyhedra with triangular faces 85

Figure 2. The graph – input to the algorithm

The algorithm generates following output:

Vertex: 5 Degree: 3
Incident edges on vertex:
(5,1) (5,2) (5,3)

Vertex: 6 Degree: 3
Incident edges on vertex:
(6,1) (6,3) (6,4)

Vertex: 1 Degree: 4
Incident edges on vertex:
(1,2) (1,4) (1,5) (1,6)

Vertex: 2 Degree: 4
 .
 .

3.2 In the second algorithm, we consider the problem of finding connected vertices in an
undirected graph G where each of the vertices has the same order. In the case of Theorem
1, order d=4 is of interest, but algorithm is more general. The pseudo-code description of
the algorithm is given in Figure 3.

Input to the algorithm is the undirected graph G with n vertices and specified
degree d. The algorithm forms, as output, list L that contains all connected vertices in G
where each of them has the same order.

In each iteration of the outer for loop, we start with a new vertex v and check its
degree. If the degree of the vertex v is equal to a specified order d, then we find all the
vertices adjacent to vertex v, (call to graph adjacentVertices method). In fact, in each
iteration of the inner loop we check the degree for each vertex u found, (u is adjacent to
v), in order to determine if the connected edge (v,u) should be added to the list L.

Algorithm2:For finding connected vertices of the same order
 Input: A graph G and specified degree d
 Output: List L

 M.Stojanović, M.Vučković /Convex polyhedra with triangular faces 86

Let L be an initially empty list;
for each vertex v in G.vertices()
{ if (G.degree(v) == d) then
 for each vertex u in G.adjacentVertices(v)
 { if (G.degree(u) == d) then
 L.insertLast ((v,u)); // insert edge (v,u)
into L
 }
}
if L is not empty
{ writeLine (“ specified order{0}”, d);
 writeLine(“ connected vertices: ”);
 for each edge (v,w) in L.elements() {
 write (“ ({0}, {1}) ”,v, w);
 }
 writeLine();
 } return L

Figure 3. Pseudo-code for finding connected vertices of the same order

Example 2.

The input to the algorithm is the graph shown in Figure 2 (see previous section).
This algorithm formes following output:

Specified order: 4
connected vertices:
(1,2) (1,4) (2,1) (2,3) (2,4)
(3,2) (3,4) (4,1) (4,2) (4,3)

3.3 The conditions of Theorem 2 are tested in algorithms given in [13]. Here, only short
descriptions and examples are presented to complete the investigation. In testing these
conditions, one algorithm forms neighbor circles, while the other one forms inserted
circles.

The input to the algorithm for forming neighbor circles is an undirected graph G
with n vertices and a specific starting vertex s ∈ G. This algorithm forms circles C0,
C1,…, Cm and lists L0, L1,…,Lm-1. Each Ci represents neighbor circle. Each list Li contains
the edges which connect pairs (u,v) of vertices, where u ∈ Ci and v ∈ Ci+1.

1. We begin with initializing the graph (circle) C0, so it contains a specific vertex s.
2. In each iteration, the algorithm forms a new graph (circle) Ci+1 and a new list Li. The

process is repeated until the graph G becomes empty.
3. For each vertex w ∈ Ci we find its incident edges in graph G. Algorithm for each

discovered edge (w,q)
i. insert SITS endpoint q to graph Ci+1
ii. inserts edge (w,q) to the list Li

iii. removes edge (w,q) from the graph G.

 M.Stojanović, M.Vučković /Convex polyhedra with triangular faces 87

4. Algorithm for each vertex w ∈ Ci+1 finds all vertices in G, adjacent to vertex w; for
each found vertex v ∈ G adjacent to w, we check if v is in Ci+1. If vertex v ∈ Ci+1,
then edge (w,v) is inserted in Ci+1.

5. When Ci+1 is formed, all edges in Ci+1 are removed from G.

Example:

An undirected graph G with 14 vertices, shown below, and vertex B5, are used
as algorithm input.

B5

B1

B2B3

B4

A1

A2

A3
A4

A5

C1 C4

C3C2

Figure 4. Input to the algorithm

The algorithm has generated the following output:

formed neighbor circles:

 ordinal number of circle: 0 degree of circle: 1
 vertices of circle: B5
 edges of circle:
 edges that connect two adjacent circles C0 and C1:
 (B5,B1) (B5,B2) (B5,B3) (B5,B4)

 ordinal number of circle: 1 degree of circle: 4
 vertices of circle: B1, B2, B3, B4,
 edges of circle: (B1,B2) (B2,B3) (B3,B4) (B4,B1)
edges that connect two adjacent circles C1 and C2:
 (B1,A1) (B1,A2) (B1,A5) (B2,A2) (B2,A3) (B3,A3)
 (B3,A4) (B4,A4) (B4,A5)
 ordinal number of circle: 2 degree of circle: 5

 ordinal number of circle: 3 degree of circle: 4

 M.Stojanović, M.Vučković /Convex polyhedra with triangular faces 88

The input to the algorithm for forming inserted circles are graphs C0, C1,…,Cm

and lists L0, L1,…,Lm-1, which are formed by the precedent algorithm. Each graph Ci
represents a neighbor circle. Each list Li stores the edges which connect the pairs (u,v) of
vertices, where u ∈ Ci and v ∈ Ci+1.

1. Algorithm begins with process traverses circles (graphs) C0, C1, … ,Cm by

considering the order of each graph.
2. If algorithm finds a graph Ci of order six, then

• for each vertex v∈ Ci
2.1 finds its two adjacency vertices x and y in Ci

2.2 adds vertices v, x, y to temporary queue Q

2.3 calls algorithm, for finding two vertices w and q in circle Ci-1

neighbor to Ci, such that vertex w connects with vertex x ∈ Ci, as
vertex q connects with vertex y ∈ Ci. Vertex w also has to be adjacent
to vertex q, and v has to not be adjacent to w or q. Algorithm returns
queue D that contains five vertices of the inserted circle, which is
formed.

2.4 calls algorithm for forming inserted circle. The input in this
algorithm is queue D and a new empty graph Pk. The algorithm output
formed an inserted circle Pk of order five.

2.5 Furthermore, the main algorithm repeats the above steps 2.3 and 2.4
for circle Ci+1 neighbor to Ci.

3. The above process repeats while circles Ci of order six exist.
4. When the process is terminated, the algorithm returns inserted circles P0, P1, …, Pk.

Example 3.

Input to this algorithm is the polyhedron shown in Figure 5, with neighbor
circles A01; A11, A12, A13, A14, A15, A16; A21, A22, A23, A24, A25, A26; A31 and edges that
connect two adjacent circles: A01A11, A01A12, A01A13, A01A14, A01A15, A01A16; A11A21, A12A21,
A12A22, A12A23, A13A23, A13A24, A14 A24, A14 A25, A14A26, A15A26, A16A26, A16A21; A21A31,
A22A31, A23A31, A24A31, A25A31, A26A31.

 M.Stojanović, M.Vučković /Convex polyhedra with triangular faces 89

Figure 5. Input to the algorithm

The algorithm generates the following output:

ordinal number of inserted circle: 0
edges of inserted circle:
(A13,A14) (A13,A12) (A14,A26) (A12,A21) (A26,A21)

3.4 The first step in doing cone triangulation is finding triangular faces of graph,
representing given polyhedron. This is necessary, since the data on faces are omitted in
this representation.

The input to the algorithm is an undirected graph G with n vertices. The
algorithm forms list T, as the output, which contains triangular faces. The pseudo-code
description of the main algorithm is given in Figure 6.

In each iteration of the outer for loop, the algorithm starts with a new vertex u
and finds its incident edges (call to graph incidentEdges method). Also, for each found
edge (u, v) incident to the current vertex u, the algorithm finds all the vertices adjacent to
vertex u (call to graph adjacentVertices method).

For each vertex w found, (w adjacent to the vertex u), the algorithm checks if the
vertices w and v are adjacent, in order to determine if the new triangular (u, v, w) should
be added to the list T, (call to list InsertLast method). Finally, algorithm processed edge
(u,v), removes from the graph G.

When the process is finished, the algorithm returns the formed list T, which
contains the found triangular faces.

Algorithm3:For finding triangular faces

 M.Stojanović, M.Vučković /Convex polyhedra with triangular faces 90

 Input: A undirected graph G with n vertices
Output: List T

Let T be an initially empty list;

for each vertex u in G.vertices() {
 for each edge e in G.incidentEdges(u)
 { v = G.opposite (u,e); //
return the endpoint of edge e distinct from u
 for each vertex w in G.adjacentVertex(u)
{
 if G.areAdjacent(v,w) then

 T.InsertLast((u,v,w)); //
insert a new triple (u, v, w) into list T
 }

 G.removeEdge((u,v)); //remove edge (u,v) from G
 }
 }
writeLine(“formed triangular faces”);
for each triple (u,v,w) in T.elements() {
 write (“ T ({0}, {1}, {2}) ” u,v,w);
} return T

Figure 6. Pseudo-code for forming triangular faces

Example 4.

An undirected graph G shown in figure 4 is used as algorithm input. We may
assume that vertices are given in the following order: A1, A2, A3, A4, A5, B1, B2, B3, B4, B5,
C1, C2, C3, C4 and edgese in corresponding: A1A2, A1A5, A1B1, A1C1, A1C4, A2A3, A2B1,
A2B2, A2C3, A2C4, A3A4, A3B2, A3B3, A3C2, A3C3, A4A5, A4B3, A4B4, A4C1, A4C2, A5B1, A5B4,
A5C1, B1B2, B1B4, B1B5, B2B3, B2B5, B3B4, B3B5, B4B5, C1C2, C1C3, C1C4, C2C3, C3C4.
Then, in the output, triangular faces are in the following order:
T(A1, A2, B1), T(A1, A2, C4), T(A1, A5, B1), T(A1, A5, C1), T(A1, C1, C4), T(A2, A3, B2), T(A2,
A3, C3), T(A2, B1, B2), T(A2, C3, C4), T(A3, A4, B3), T(A3, B4, C2), T(A3, B2, B3), T(A3, C2,
C3), T(A4, A5, B4), T(A4, A5, C1), T(A4, B3, B4), T(A4, C1, C2), T(A5, B1, B4), T(B1, B2, B5),
T(B1, B4, B5), T(B2, B3, B5), T(B3, B4, B5), T(C1, C2, C3), T(C1, C3, C4).

3.5 The final algorithm serves for the purpose of making cone triangulation.

The inputs to the algorithm are the list T, which is formed by the previous
algorithm for finding triangular faces, and a particular vertex q, which represents the
apex of the triangulation. The algorithm forms list S as output, that contains the found
tetrahedra. The pseudo-code description of the main algorithm is given in Figure 7.

In each iteration of the first for loop, the algorithm checks if the triangular face
from the list T contains a particular apex q. In case the triangular face does not contain a
particular apex q, the apex q is added as a fourth vertex, so the tetrahedron formed this
way is added to the list S.

 M.Stojanović, M.Vučković /Convex polyhedra with triangular faces 91

Algorithm4:For cone triangulation

Input: List T and particular vertex q
 Output: List S

Let S be an initially empty list;

for each triple (u,v,w) in T.elements() {
 if not ((u == q) or (v == q) or (w == q)) then

S.InsertLast((q,u,v,w)); // Insert a new tetrahedron
(q,u,v,w) into list S
}
writeLine(“formed tetrahedra”);
for each tetrahedron (q,u,v,w) in S.elements() {

 write (“ S ({0}, {1}, {2}, {3}) “ q,u,v,w);
} return S

Figure 7. Pseudo-code for cone triangulation

Example 5.
If in the previous example, with graph G given in figure 4, the particular vertex

is A2, then the output is a list of tetrahedra given in the following order:
S(A1, A5, B1, A2), S(A1, A5, C1, A2), S(A1, C1, C4, A2),S(A3, A4, B3, A2),S(A3, B4, C2, A2),
S(A3, B2, B3, A2), S(A3, C2, C3, A2), S(A4, A5, B4, A2), S(A4, A5, C1, A2),S(A4, B3, B4, A2),
S(A4, C1, C2, A2), S(A5, B1, B4, A2), S(B1, B2, B5, A2), S(B1, B4, B5, A2), S(B2, B3, B5, A2),
S(B3, B4, B5, A2), S(C1, C2, C3, A2), S(C1, C3, C4, A2).

4. CONCLUSIONS

In the paper are given algorithms for cone triangulation which are polynomial.
That is significant, since finding minimal triangulation of convex polyhedra is an NP-
hard problem and cone triangulation provides close number of tetrahedra. The algorithms
for testing necessary conditions, given in this paper, are polynomial as well.

Knowing the results of algorithms for necessary conditions along with the
results given in [13], we can consider improvements of cone triangulation. The proposed
approach can also be extended for the purpose of solving similar geometric problems.

REFERENCES

[1] Baumgart, B. G., “A polyhedron representation for computer vision”, in: Proceedings of the
1975 National Computer Conference, AFIPS Conference Proceedings, vol. 44. AFIPS Press,
Reston, Va., 1975.

[2] Below, A., Loera, J.A., and Gebert, J.R., “The complexity of finding small triangulations of
convex 3-polytopes”, arXiv:math/0012177v1.

[3] Brinkmann, G., and McKay, B.D., “Fast generation of planar graphs”, MATCH Commun.
Math. Comput. Chem., 58 (2) (2007) 323-357.

 M.Stojanović, M.Vučković /Convex polyhedra with triangular faces 92

[4] Goodrich M., and Tamassia R., Data Structures and Algorithms in Java, Second Edition.
John Wiley & Sons, 2001.

[5] Chin, F.Y.L., Fung, S.P.Y., and Wang, C.A., “Approximation for minimum triangulations of
simplicial convex 3-polytopes”, Discrete Comput. Geom., 26 (4) (2001) 499-511.

[6] Develin, Mike, “Maximal triangulations of a regular prism”, J. Comb. Theory, Ser.A, 106 (1)
(2004) 159-164.

[7] Edelsbrunner, H., Preparata, F.P., and West, D.B., “Tetrahedrizing point sets in three
dimensions”, J. Simbolic Computation, 10 (1990) 335-347.

[8] McConnell J., Analysis of Algorithms: An Active Learning Approach, Jones and Bartlett
Publishers, 2001.

[9] Ruppert, J., and Seidel, R., “On the difficulty of triangulating three – dimensional nonconvex
polyhedra”, Discrete Comput. Geom., 7 (1992) 227-253.

[10] Sleator, D.D., Tarjan, R.E., and Thurston, W.P., “Rotatory distance, triangulations, and
hyperbolic geometry”, J. of the Am. Math. Soc., 1 (3) 1988.

[11] Stojanović, M., “Algorithms for triangulating polyhedra with a small number of tetrahedral”,
Mat. Vesnik, 57 (2005) 1-9.

[12] Stojanović, M., “Triangulations of some cases of polyhedra with a small number of
tetrahedral”, Krag. J. Math., 31 (2008) 85-93.

[13] Stojanović, M., and Vučković, M., “Algorithms for investigating optimality of cone
triangulation for a polyhedron”, Krag. J. Math., 30 (2007) 327-342.

