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Abstract: Classical combinatorial optimization problems can be generalized in a natural 
way by considering a related problem relative to a given partition of the nodes of the 
graph into node sets. In the literature one can find generalized problems such as:  
generalized minimum spanning tree, generalized traveling salesman problem, generalized 
Steiner tree problem, generalized vehicle routing problem, etc. These generalized 
problems typically belong to the class of NP-complete problems; they are harder than the 
classical ones, and nowadays are intensively studied due to their interesting properties 
and applications in the real world. Because of the complexity of finding the optimal or 
near-optimal solution in case of the generalized combinatorial optimization problems, 
great effort has been made, by many researchers, to develop efficient ways of their 
transformation into classical corresponding variants. We present in this paper an efficient 
way of transforming the generalized vehicle routing problem into the vehicle routing 
problem, and a new integer programming formulation of the problem. 
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1. INTRODUCTION 

Combinatorial optimization is a branch of optimization; its domain is 
optimization problems where the set of feasible solutions is discrete or can be reduced to 
a discrete one, and the goal is to find the best possible solution. 

The challenge of combinatorial optimization is to develop the algorithms for 
which the number of elementary computational steps is acceptably small. 

The study of combinatorial optimization owes its existence to the advent of 
modern digital computer. Most of the currently accepted methods for solving 
combinatorial optimization problems would have hardly been taken seriously 30 years 
ago, for no one could have carried out the computations involved. Moreover, the 
existence of digital computers created a multitude of technical problems with the 
combinatorial character.  

A large number of combinatorial optimization problems were generated by 
research in computer design, the theory of computation, and by the application of 
computers to a myriad of numerical and non-numerical problems, which required new 
methods, new approaches and new mathematical insights.     

Combinatorial optimization problems can be generalized in a natural way by 
considering a related problem relative to a given partition of the nodes of the graph into 
node sets, while the feasibility constraints are expressed in terms of clusters. In this way, 
the class of generalized combinatorial optimization problems is introduced. In the 
literature we can find several generalized problems such as: generalized minimum 
spanning tree, generalized traveling salesman problem, generalized vehicle routing 
problem, generalized (subset) assignment problem, etc. These generalized problems 
belong to the class of NP-complete problems; they are harder than the classical ones, and 
nowadays are intensively studied due to their  interesting properties and applications in 
the real world; though, many practitioners are reluctant to use them for practical 
modeling problems because of their complexity of finding optimal or near-optimal 
solutions. 

For this class of problems, several approaches were developed: exact algorithms 
[22], approximation algorithms [19] and relaxation methods [20], so as several models 
based on integer programming [18]. 

The complexity of obtaining optimum or even near-optimal solutions for the 
generalized combinatorial optimization problems  led to the development of: 
• several metaheuristics: tabu search [16], simulated annealing [23], genetic 

algorithms, variable neighborhood search [8], etc; 
• efficient transformations of the generalized combinatorial optimization problems 

into classical combinatorial optimization problems [3,4,6,8,14]. 
Regarding the latest approach, there are at least two reasons for which it seems 

appropriate: 
• first, the generalized combinatorial optimization problems are natural extensions 

of combinatorial optimization problems, and we may take advantage of the 
similarities between them; 

• second, there are several efficient methods for solving classical combinatorial 
optimization problems.   
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In the present paper we confine ourselves to the generalized vehicle routing 
problem denoted by GVRP. 

The aim of this paper is to describe a new integer programming formulation of 
the GVRP, and to present a new efficient transformation of the GVRP into the classical 
vehicle routing problem (VRP).  

 
2. DEFINITION OF THE GENERALIZED VEHICLE ROUTING 

PROBLEM 

The Vehicle Routing Problem (VRP) calls for determination of the optimal set 
of routes to be performed by a fleet of vehicles to serve a given set of customers, which is 
the subject to various constraints such as vehicle capacity, route length, time windows, 
etc. It is one of the most important and most studied combinatorial optimization 
problems.  

The VRP has a significant economic importance due to its numerous practical 
applications in the field of distribution, collection, logistics, etc. A wide body of literature 
exists on the VRP problem (for an extensive bibliography, see Laporte and Osman [14], 
Laporte [12], etc). 

The Generalized Vehicle Routing Problem (GVRP) is a generalization of the 
Vehicle Routing Problem (VRP) introduced by Ghiani and Improta [6]. Given is a 
directed graph whose nodes are partitioned into a given number of nodes sets (called 
clusters), the GVRP has to find the optimal routes from the given depot to the number of 
predefined clusters ,which include exactly one node from each cluster. They proposed, as 
well, a solution procedure by transforming the GVRP into a Capacitated Arc Routing 
problem, for which exact algorithms and several approximate procedures are reported in 
literature. Integer programming formulations for the GVRP were proposed by Kara and 
Bektas [10] and Kara and Pop [11]. In [21], Pop et al. proposed a metaheuristic algorithm 
for solving the GVRP based on ant colony optimization; it was tested on several 
benchmark problems drawn from TSPLIB library test problems. As far as we know, this 
is the only method proposed for solving the GVRP. 

The GVRP is able to model the distribution of goods by sea to a number of 
customers situated in an archipelago as in Philippines, New Zealand, Indonesia, Italy, 
Greece and Croatia. In this application, a number of potential harbors are selected for 
every island, and a fleet of ships is required to visit exactly one harbor for every island. 

Several applications of the GTSP (Laporte et al. [13]) may be extended naturally 
to GVRP. In addition, several other situations can be modeled as a GVRP, which  
include: 

• the Traveling Salesman Problem (TSP) with profits (Feillet et al. [5]); 
• a number of Vehicle Routing Problem (VRP) extensions: the VRP with 

selective backhauls, the covering VRP, the periodic VRP, the capacitated general windy 
routing problem, etc.; 

• the design of tandem configurations for automated guided vehicles (Baldacci et 
al. [2]). 

Let ( , )G N A=  be a directed graph with { }0,1,2,...,N n=  as the set of nodes 

and { }( , ) , ,A i j i j N i j= ∈ ≠ . We assume that a nonnegative cost denoted by ijc  is 
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associated with each arc ( , )i j N∈ . Node 0 represents the depot and remaining n nodes 
represent geographically dispersed customers. The node set N  is partitioned into k 
mutually exclusive nonempty subsets iV  such that 0 1 ... kN V V V= ∪ ∪ ∪ , where { }0 0V =  
is the depot (origin). Each customer has a certain amount of demands and the total 
demand of each cluster can be satisfied via any of its nodes. There exist m identical 
vehicles, each with a capacity Q. 

Then the generalized vehicle routing problem (GVRP) consists of finding the 
minimum total cost tours of starting and ending at the depot, such that each cluster should 
be visited exactly once, the entering and leaving nodes of each cluster is the same, and 
the sum of all the demands of any tour (route) does not exceed the capacity of the vehicle 
Q. An illustrative scheme of the GVRP and a feasible tour is shown in the next figure. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A feasible solution to the Generalized Vehicle Routing Problem  

The GVRP is NP-hard because it includes the generalized traveling salesman 
problem (GTSP) as a special case when 1m =  and Q = ∞ . 
 
3. A NEW INTEGER PROGRAMMING FORMULATION OF THE GVRP  

In 2003, Kara and Bektas [10] proposed an integer programming formulation for 
GVRP with a polynomially increasing number of binary variables and constraints; and in 
2008 Kara and Pop [11] presented two integer linear programming formulations for 
GVRP with 2( )O n  binary variables and 2( )O n  constraints.  
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The model for the GVRP has the following parameters: 
n  is the number of customers which are partitioned into a given number of 

clusters; 
m is the number of vehicles; 
qi denotes the demand of a customer i (in same units as vehicle capacity); 
cij is the cost of traveling from a customer i to a customer j. 
All the parameters are considered as non-negative. A homogeneous fleet of 

vehicles with a limited capacity Q and a central depot, with index 0, makes deliveries to 
exactly one customer from each cluster. The problem is to determine the exact tour for 
each vehicle starting and ending at the depot and visiting exactly one customer from each 
cluster. The sum over the demands of the customers in every tour has to be within the 
limits of the vehicle capacity. The objective is to minimize the total travel cost. That 
could also be the distance between the nodes or other quantities on which the quality of 
the solution depends, based on the problem to be solved. Hereafter, it will be referred to 
as a cost. 

The mathematical model is defined on a graph ( , )N A . The node set N 
corresponds to the set of customers from 1 to n and in addition to the depot number 0. 
The arc set A consists of possible connections between the nodes. A connection between 
every two nodes in the graph will be included in A here. Each arc ( , )i j A∈  has a travel 
cost ijc  associated to it. It is assumed that the cost is symmetric, i.e. ij ijc c= , and also 
that 0ijc = . The set of uniform vehicles is V. The vehicles have a capacity Q, and all 
customers have a demand jd . 

In order to model the GVRP as an integer programming, we consider two binary 
variables: 1v

ijx = , if the vehicle v  drives from the customer i  to the customer j , and 

0v
ijx = , otherwise; 1iz = , if the customer i  is selected and 0iz =  otherwise. 

The objective function and the constraints of the mathematical model of the 
GVRP can be described as follows: 
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Constraints (1) are to make sure that exactly one customer is visited from each 
cluster, and the constraint (2) is to make sure that each visited customer is assigned to 
exactly one vehicle. In equation (3) the capacity constraints are stated: the sum over the 
demands of the customers within each vehicle v has to be less than or equal to the 
capacity of the vehicle. The flow constraints are shown in equations (4) and (5). Firstly, 
each vehicle can only leave the depot once. Secondly, the number of vehicles entering 
every customer k and the depot must be equal to the number of vehicles leaving. Finally, 
constraints (6) are the integrality constraints. 

An even simpler version could have a constant number of vehicles, but here the 
number of vehicles can be modified in order to obtain the smallest possible cost. 
However, there is a lower bound of the number of vehicles, which is the smallest number 
of vehicles that can carry the total demand of the customers: 

⎡ { }\ 0( ) /v
i j N iji N d x∈∈Σ Σ ⎤. 

4. A NUMERICAL EXAMPLE 

In this section we solve optimally the numerical example described by Ghiani 
and Improta [5] using our novel integer programming formulation of the GVRP. The 
example was derived from an VRP instance, namely test problem 7, introduced by 
Araque et al. [1] and has 50 vertices, 25 clusters and 4 vehicles. This instance is a 
randomly generated problem and was generated by placing the customers randomly on a 
square area. The vertex coordinates of the depot are (50,50) and of the customers are: 

 
1. (10,42) 2. (23,6) 3. (8,46) 4. (51,29) 5. (64,24) 
6. (28,6) 7. (30,69) 8. (87,3) 9. (13,56) 10.(80,87) 
11.(95,41) 12. (92,21) 13. (86,10) 14. (39,45) 15. (76,44) 
16.(30,34) 17. (47,3) 18. (84,70) 19. (65,5) 20. (98,18) 
21. (3,13) 22. (52,98) 23. (73,17) 24. (48,82) 25. (28,32) 
26. (16,86) 27. (50,56) 28. (53,72) 29. (75,89) 30. (41,38) 
31. (11,28) 32. (76,57) 33. (86,18) 34. (34,19) 35. (70,25) 
36. (79,50) 37. (25,13) 38. (55,94) 39. (4,33) 40. (8,66) 
41. (51,70) 42. (3,22) 43. (93,17) 44. (96,45) 45. (71,85) 
46. (39,32) 47. (37,71) 48. (79,45) 49. (96,66) 50. (69,92) 
 

The distances between the customers are the Euclidean distances, and were 
rounded to obtain integer values. The set of vertices is partitioned into 25 clusters as 
follows: 
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V0 = {0}          V1 = {22, 38}         V2 = {26}        V3 = {24}             V5 = {10, 29, 45, 50} 
V5 = {40}        V6 = {7, 47}           V7 = {28, 41}        V8 = {18, 49}             V9 = {1, 3, 9}  
V10 = {14}     V11 = {32}         V12 = {21, 42, 39, 31}   V13 = {16, 25}        V14 = {30, 46}  
V15 = {4}         V16 = {15, 36, 48}   V17 = {11, 44}       V18 = {2, 6, 37}            V19 = {34}  
V20 ={5, 23, 35}      V21 = {12, 20, 33, 43}     V22 = {17}    V23 = {8, 13, 19}   V24 = {27} 
 

In the next figure we present the vertices (customers) and their partitioned into 
clusters. 
 

 
Figure 2: Representation of the 51 vertices and their partitioning into 25 clusters 

Each customer has a unit demand, and the demand of a cluster is given by the 
cardinality of that cluster. The capacity of each vehicle is equal to 15. 

The solution reported by Ghiani and Improta [6], was obtained by transforming 
the GVRP into a Capacitated Arc Routing Problem (CARP), which was then solved to 
yield the objective value 532.73. The same instance was solved to optimality by Kara and 
Bektas [10] using their proposed integer programming formulation by CPLEX 6.0 on a 
Pentium 1100 MHz PC with 1 GB RAM in 17600.85 CPU seconds. 

Using our proposed formulation for the GVRP, we solved the same instance to 
optimality using CPLEX 12.2, getting the same value as reported by Kara and Bektas 
[10]. The required computational time was 1456.17 CPU seconds in the case of our novel 
integer programming formulation of the GVRP. The computation was performed on a 
Intel Core 2 Duo 2.00 GHz with 2 GB RAM. 
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In the next figure we point out the optimal solution of the GVRP obtained in the 
case of the instance described by Ghiani and Improta [6]. 

 

 
Figure 3: The optimal solution of the GVRP instance described by Ghiani and Improta  

 
5. AN EFFICIENT TRANSFORMATION OF THE GVRP INTO THE 

VEHICLE ROUTING PROBLEM  

Because of the complexity of the generalized combinatorial optimization 
problems, efficient transformations of these problems into classical combinatorial 
optimization problems seem to be an appropriate approach. In addition to the classical 
combinatorial optimization problems, there exist many methods for solving them. 

Several efficient transformations of the generalized combinatorial optimization 
problems into classical combinatorial optimization problems were developed: 
• in the case of the generalized traveling salesman problem (GTSP), the first 

transformation into the traveling salesman problem (TSP) was introduced by Lien, 
Ma and Wah [15], were the number of nodes of the transformed TSP was quite large, 
in fact more than three times larger than the number of nodes in the associated 
GTSP. Later, Dimitrijevic and Saric [4] developed another transformation that 
decreased the size of the corresponding TSP. In their method, the number of nodes 
of the TSP was twice the number of nodes of the original GTSP. Recently, Behzad 
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and Modarres [3] provided an efficient transformation in which the number of nodes 
in the transformed TSP does not exceed the number of nodes in the original GTSP; 

• in the case of the railway traveling salesman problem (RTSP) , which is a practical 
extension of the GTSP, considering a railway network and train schedules, and 
introduced by Hadjicaralambous et al.[7], Hu and Raidl [9] provided two 
transformation schemes to reformulated the RTSP as either a classical asymmetric or 
symmetric TSP; 

• in the case of the GVRP, Ghiani and Improta [6] showed that the problem can be 
transformed into a capacitated arc routing problem (CARP), and Baldacci et al. [2] 
proved that the reverse transformation is valid. 

Now we shall describe an efficient transformation of the GVRP into the VRP. 
The method that we propose is a modification of the transformation proposed by Behzad 
and Modarres [3] in the case of the GTSP. 

For the sake of simplicity, we assume that the arcs are defined between nodes, 
which belong to different clusters (inter-cluster edges), but we do not restrict the GVRP 
to be symmetric or Euclidean. It is easy to show that the above mentioned assumption is 
not restrictive and every GVRP can be transformed into our problem. 

Consider the GVRP with 1k +  clusters represented by a directed graph 
( , )G N A= , where { }0 1 0... , 0kN V V V V= ∪ ∪ ∪ =  and 1 rV V∩ =∅ , for all 

{ }, 0,1,..., ,l r k l r∈ ≠  and the set of arcs { }( , ) ,l rA i j i V j V l r= ∈ ∈ ≠ . The solution of 
the GVRP consists of a collection of routes. In the example presented Figure 1, the 
solution consists of two tours: V0 → V1 → V2 → V0 and V0 → V5 → V4 → V3 → V0 .  

It is important to mention that using the same approach as the one described by 
Pop et al. [21] in the case of the GTSP, called the local-global approach, given a 
sequence (Vk1 , ..., Vkp ) in which the clusters are visited in a tour, it is possible to find the 
best feasible tour that passes through exactly one node from each visited cluster (w.r.t 
cost minimization), by visiting the clusters according to the given sequence. This can be 
done in polynomial time, by solving |Vk1| shortest path problems in a constructed layered 
network. 

Let denote by vr
i the i-th node of the cluster r. 

Then we define the VRP on a directed graph G′ associated to G as follows:  
1. The set of nodes of G and G′  are identical. 
2. All nodes of each cluster are connected by arcs into a cycle in G′. We denote by 

vr
i(s) the node that succeeds vr

i in the cycle. 
3. The costs of the arcs of the transformed graph G′  are defined as:  

( )( , ) 0r r
i i sc v v′ =  

and 

( )( , ) ( , ) , ,r t r t
i i i s ic v v c v v M r t′ = + ≠  

where M  must be a sufficiently large number, for example ( , ) ( , )i j Ac i j∈Σ . 
We will call a tour that visits exactly one node from a given number of clusters a 

generalized tour.  
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We define a path in G′ as an intra-cluster path if it consists of all the nodes of 
only one cluster. 

In addition, we define a tour in G′ containing the depot { }0  whose cost is less 
than ( 1)p M+ as an generalized tour visiting p clusters and containing as well the depot 

{ }0 0V = . 
Lemma 1. Every tour in G′, corresponding to a generalized tour visiting p 

clusters enters and leaves each cluster exactly once. 
Proof. From the definition of the costs in the directed graph G′ we have that the 

costs of moving from one cluster to another is at least M. Since the tour in G′ visits all the 
p clusters, its cost is at least pM. If the tour in G′ does not traverse along the cluster paths, 
it will imply that it enters and leaves each of the p clusters more than once, and therefore 
the cost of the tour cannot be less than ( 1)p M+ , which is a contradiction. 

We can define now the one-to-one correspondence between tours in G′ and 
generalized tours in G: 

1. Consider a tour in G′ and connect the first nodes of its clusters paths together in 
the order of their corresponding clusters, then the result is a generalized tour in G. 

2. Consider a generalized tour in G that includes the following nodes ⋅⋅⋅ → vr
i → vt

j  
⋅⋅⋅, r ≠ t. Replacing the node vr

i with the r-th cluster path starting with vr
i and then 

connecting the last node of this path to the next cluster path starting with vt
j, we 

obtain a tour in G′. 
It is obvious that the cost of a generalized tour in G visiting p clusters is equal to 

the cost of the corresponding tour in G′ less pM , and the cost of the GVRP is the sum of 
the costs of the generalized tours. 

In the next figure, we illustrate the described transformation procedure and show 
an example how the routes are adapted into the new graph G′ . 

 

 

Figure 4: Transforming the graph G into G′ 
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The optimal solution of the VRP consisting of two tours is illustrated by dash-
dot arcs and bold arcs in figure 2. The nodes of each cluster are cycled in G′  by pointed 
arcs as shown in the figure 2. The optimal cost of VRP is 22+7M and respectively the 
cost of the GVRP is 22.    

6. CONCLUSIONS  

In this paper we consider the generalized vehicle routing problem which looks 
for the optimal routes from a given depot to a number of predefined clusters which 
include exactly one node from each cluster. We present a new integer programming 
formulation of the GVRP as well as the description of an efficient transformation 
procedure of the GVRP into VRP. 

„ACKNOWLEDGEMENT: This paper is supported by the Sectoral Operational 
Programme Human Resources Development (SOP HRD), financed from the European 
Social Fund and by the Romanian Government under the contract number POSDRU ID 
56815." 

REFERENCES 

[1] Araque, J.R., Kudva, G., Morin, T.L., and Pekny, J.K., “A branch and cut algorithm for 
vehicle routing problem”, Annals of Operations Research, 50 (1994) 37-59. 

[2] Baldacci, R., Bartolini, E., and Laporte, G., “Some applications of the Generalized Vehicle 
Routing Problem”, Le Cahiers du GERAD, G-2008-82, 2008. 

[3] Behzad, A., and Modarres, M., “A new efficient transformation of generalized traveling 
salesman problem into traveling salesman problem”, in: Proc. of the 15th International 
Conference of Systems Engineering, 2002, 6-8. 

[4] Dimitrijevic, D., and Saric, Z., “Efficient transformation of the generalized traveling Salesman 
problem into the traveling salesman problem on digraphs”, Information Sci.,102 (1997) 65-
110. 

[5] Feillet, D., Dejax, P., and Gendreau, M., “Traveling salesman problems with profits”, 
Transportation Science, 39 (2005) 188-205. 

[6] Ghiani, G., and Improta, G., “An efficient transformation of the generalized vehicle routing 
problem”, European Journal of Operational Research, 122 (2000) 11-17. 

[7] Hadjicharalambous, G., Pop, P.C., Pyrga, E., Tsaggouris, G., and Zaroliagis, C.D., “The 
railway traveling salesman problem”, Lecture Notes in Computer Science, 4359 (2007) 264-
275. 

[8] Hu, B., Leitner, M., and Raidl, G., “Combining variable neighborhood search with integer 
linear programming for the generalized minimum spanning tree problem”, Journal of 
Heuristics, 14 (5) (2008) 473-499. 

[9] Hu, B., and Raidl, G., “Solving the railway traveling salesman problem via a transformation 
into the classical traveling salesman problem”, in: Proc. of the 8th International Conference on 
Hybrid Intelligent Systems, 2008, 73-78. 

[10] Kara, I., and Bektas, T., “Integer linear programming formulation of the generalized vehicle 
routing problem”, in: Proc. of the 5-th EURO/INFORMS Joint International Meeting, 2003. 

[11] Kara, I., and Pop, P.C., “New mathematical models of the generalized vehicle routing problem 
and extensions”, in: Proc. of the International Conference on Applied Mathematical 
Programming and Modelling, Bratislava, Slovakia, May 27-30, 2008. 

[12] Laporte, G., “What you should know about the Vehicle Routing Problem,” Naval Research 
Logistics, 54 (2007) 811-819. 

[13] Laporte, G., Asef-Vaziri, A., and Sriskandarajah, C., “Some applications of the generalized 
traveling salesman problem,” Journal of Operational Research Society, 47 (1996), 1461-1467. 



 P. Pop, C. Pop Sitar / A New Efficient Transformation 198

[14] Laporte, G., and Osman, I.H., “Routing problems: A bibliography,” Annals of Operations 
Research, 61 (1995) 227-262. 

[15] Lien, Y., Ma, E., and Wah, B.W., “Transformation of the generalized traveling salesman 
problem into the standard traveling salesman problem”, Information Sci., 74 (1993) 177-189. 

[16] Oncan, T., Cardeau, J.-F., and Laporte, G., “A tabu search heuristic for the generalized 
minimum spanning tree problem”, European Journal of Operational Research, 191 (2008), 
306-319. 

[17] Pintea, C.M., Dumitrescu, D., and Pop, P.C., “Combining heuristics and modifying local 
information to guide ant-based search”, Carpathian Journal of Mathematics, 24 (1) (2008) 94-
103. 

[18] Pop, P.C., “A survey of different integer programming formulations of the generalized 
minimum spanning tree problem”, Carpathian Journal of Mathematics, 25 (1) (2009) 104-
118. 

[19] Pop, P.C., Kern, W., and Still, G., “An approximation algorithm for the generalized minimum 
spanning tree problem with bounded cluster size,” Texts in Algorithms, 4 (2005) 115-122. 

[20] Pop, P.C., Kern, W., and Still, G., “A new relaxation method for solving the generalized 
minimum spanning tree problem”, European Journal of Operational Research, 170 (2006) 
900-908. 

[21] Pop, P.C., Pintea, C.M., Zelina, I., and Dumitrescu, D., “Solving the generalized vehicle 
problem with an ACS-algorithm", American Institute of Physics, 1117 (2009) 157-162. 

[22] Pop, P.C., Pop Sitar, C., Zelina, I., and Tascu, I., “Exact algorithms for generalized 
combinatorial optimization problems”, Lecture Notes in Computer Science, 4616 (2007) 154-
162. 

[23] Pop, P.C., Sabo, C., Pop Sitar, C., and Craciun, M., “A simulated annealing based approach 
for solving the generalized minimum spanning tree problem,” Creative Mathematics and 
Informatics, 16 (2007) 42-53. 


