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1. INTRODUCTION 

The two-parameter generalized Pareto distribution with the shape parameter γ 
and the scale parameter σ (denoted GPD (γ, σ)) is the distribution of the random variable 

( )1 YX e γσ γ−= −  where Y is a random variable with the standard exponential 
distribution. GPD (γ, σ) has the distribution function 
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A number of important and commonly used probability distributions belong to 
GPD family: 

1. For γ = 0, GPD reduces to the exponential distribution with mean σ. 
2. For γ = 1, GPD reduces to the uniform U [0, σ] distribution. 
3. For γ < 0, GPD reduces to the Pareto distribution with parameter γ. 

Generalized Pareto distributions were introduced by Pickands [20]. These are 
the only continuous distribution functions that are stable with respect to excess over 
threshold operations (POT-stable). Precisely, if a random variable X has a GPD (γ, σ) 
distribution, then the conditional distribution of X - u given X > u is GPD (γ, σ-γu). This 
property has a key role in the POT-approach to modeling extremes.  

POT-approach consists of fitting the GPD to the distribution of the excesses 
over a sufficiently high threshold, i.e. to the conditional distribution of X - u given X > u, 
when u tends to the right endpoint of the support of the distribution. This type of 
approximation is justified by the Theorem Balkema-de Haan (1974) [2]. 

Important issues concerning fitting the GPD to the data, that still attract a 
considerable attention, are estimating unknown parameters (shape or scale parameter, or 
both of them) and estimating quantiles of the distribution [1, 3, 5, 6, 10, 11, 13, 17, 19]. 
A recent review of the subject is given in [7]. 

The aim of this paper is to compare three different methods for estimating 
parameters and quantiles of the two-parameter GPD. These are: method of moments 
(MOM), method of probability weighted moments (PWM), and EPM (elemental 
percentile method). The three methods are compared in terms of their bias, root mean 
squared error and robustness, using a large number of simulated data sets.  

GPD model, within the framework of POT-approach, has numerous applications 
in hydrology [5, 21], insurance, finance [8, 18, 21], waiting time problems [12], ecology 
climatology [5, 14, 16], and other fields. An example of applying the POT-approach to 
finance (estimating VaR-parameter) is given in this paper, with special emphasis to 
certain difficulties related to the problem.    

The paper is organized as follows: definitions and main properties of the three 
estimation methods are given in Section 2, simulation results are given in Section 3, and 
the case study - an example of applying these methods to finance is given in Section 4. 
All computations in this work are performed in MATLAB.   
 

 
2. ESTIMATING GPD PARAMETERS 

The most traditional GPD estimation methods are MOM, PWM and maximum 
likelihood method (ML). In the last couple of decades, several modifications of these 
methods were developed, as well as some new procedures, mostly computationally 
intensive. Recent reviews of this problem are given in [7] and [17]. 
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The present paper deals with the two simplest methods, MOM and PWM, and 
with the procedure developed by Castillo and Hadi [3]. The study is focused on small 
samples, so the ML method is not considered (it has been demonstrated in [11] that it is 
less reliable than the other estimation methods for samples of the size smaller than 500).  
 

2.1. Method of moments 

Let x1, x2,... xn  be a random sample from GPD (γ, σ) and let x and s2 be the 
sample mean and sample variance, respectively. Then the method-of-moments (MOM) 
estimates for the parameters γ and σ are given by 
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MOM estimates are defined in [11]. According to [3] and [11], they are recommended in 
cases 0 < γ < 0.4. Since they are very easy to compute, MOM estimates can also be used 
as the initial estimates in other estimation procedures (which require numerical 
techniques).  
 
2.2. Method of probability weighted moments 

Let 1: 2: :n n n nx x x≤ ≤ ≤L  be a sorted random sample from GPD (γ, σ) and let 
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Then the probability-weighted-moments (PWM) estimates for γ and σ are given by 
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PWM estimation method is defined in [10].  According to [3], the method is 
recommended for -0.4 < γ < 0. 
 
2.3. Elemental percentile method 

Elemental percentile method (EPM) is a procedure for fitting the GPD to data, 
defined in [3]. It is performed in two stages:  

1. calculating certain number of initial estimates for parameters γ and σ; 
2. obtaining overall estimates for γ and σ from the initial estimates. 

               
1.  Let 1: 2: :n n n nx x x≤ ≤ ≤L   be a sorted sample from GPD (γ, σ) and let 
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According to [3], the best results are obtained for α = 0 and β = 1. 
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Putting σ δ
γ
=  in (2.3) and eliminating γ from the system yields 
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where ( ):log 1 0.i i nC p= − <     
It follows from the Theorem 1 in [3], that the equation (2.4), which is a function 

of only one variable δ, has a finite solution δ (i, j) that can be found using the bisection 
method. Substituting δ (i, j) into (2.3) gives estimates γ (i, j) and σ (i, j) for γ and σ. 
 
2.  When the estimates γ (i, j) and σ (i, j) are obtained for all possible combinations of 
indices (i, j), then the overall γ and σ estimates are given by 
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with median (a1, a2,…,an) being the median of {a1, a2,…,an}. 
If n is large, the number of distinct pairs (i, j) is large, so as the number of necessary 
calculations. One possible way to overcome this difficulty is to consider only the cases  
i = 1, 2,...  n -1 and  j = n, instead of all possible pairs (i, j). This simplification is also 
applied in the present work.  
Important advantage of the EPM method over the other estimation procedures is that 
EPM estimates exist for all values of parameters γ and σ. Although the EPM is 
computationally intensive, the numerical algorithm never shows convergence problems. 
According to [3], the method is recommended when γ lies outside the range [-0.4, 0.4]. 
 
2.4. Estimating GPD quantiles  

The problem closely related to fitting the GPD to data is estimating quantiles of 
the distribution. 
Quantiles of the GPD (γ, σ) are given in terms of the parameters by 
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 (2.6) 

The problem is then reduced to obtaining estimates for the parameters γ and σ and their 
substitution into (2.6). 
 
2.5. Estimating tail and quantiles of the distribution with GPD fitted to the excesses  

Let x1, x2,... xn be a random sample from the distribution with unknown 
underlying distribution function F. The upper tail of F can be presented in the following 
form: 

( ) ( )( ) ( )( )( )1 1 1 , 0,uF x u F x F u x− + = − − ≥  (2.7) 
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with ( ) ( )uF x  being the conditional distribution of the excesses X - u, given X > u. 

Suppose that ( ) ( )uF x   can be approximated by GPD (γ, σ), and let Nu be the number of 
excesses of the threshold u in the given sample. Estimating the first term on the right 

hand side of (2.7) by ,1 ) (F xγ σ−  and the second term by uN
n  , one can estimate the 

tail of F by 

( ) ( )( ),1 1 .uN
F x u F x

n γ σ− + = −  (2.8) 

Inverting the formula (2.8), one obtains the estimate for the p-quantile of F: 
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For a fixed threshold, the term  
u

n
N  is constant and the estimates (2.6) and (2.9) have 

similar properties.  
 

3. SIMULATIONS 

Robustness is an important issue in statistics, particularly in modeling extremes. 
Extreme observations are often contaminated (inaccurately measured, truncated in 
inappropriate way…). A way to deal with this type of problems is to fit a model which is 
robust, i.e. not affected too much by small departures from model assumptions. 

The techniques considered here (MOM, PWM, EPM) are not robust, in general. 
However, if the focus is on a particular problem of estimating high quantiles (95% and 
99% quantiles, that are commonly used in practical applications), results may be 
satisfactory.  

In order to check the properties of the three methods for estimating 95% and 
99% quantiles, according to [13] and [19], 1000 samples (sample sizes n = 15, 45) are 
generated from: 

1.  GPD (γ, 1), for γ ϵ{ -1, -0.6, -0.2, 0, 0.2, 0.6, 1 }; 

2.  GPD (γ, 1) slightly contaminated with GPD with different shape parameter  
(mixture 0.9 Fγ,1 + 0.1 F2γ,1), for the same values of γ; 

3.  GPD (γ, 1) slightly contaminated with GPD with different scale parameter 
(mixture 0.9 Fγ,1 + 0.1 Fγ,2), for the same values of  γ. 

Since all three estimation methods are invariant to the value of σ, only the case σ = 1 is 
considered (as it was done in [3] and [11]). Results for contaminated samples and n = 45 
are omitted from the text for space-saving purposes. 
 



302 J. Jocković / Quantile Estimation for the Generalized Pareto 

3.1. Simulation results 

Simulation results summarized in Tables 2 – 5 show the bias and the root mean squared 
error (RMSE) of the 95% and 99% quantile estimators. Biases and RMSE’s of the 
estimators were scaled by the true values of the quantiles being estimated. The true 
values of the quantiles are given in the Table 1. 
 
Table 1: The true values of the quantiles being estimated 

γ 95% quantile 99% quantile 
-1 19.00 99.00 

-0.6 8.39 24.75 
-0.2 4.10 7.56 

0 3.00 4.61 
0.2 2.25 3.01 
0.6 1.39 1.56 

1 0.95 0.99 
 
 
Table 2: Simulated bias (RMSE) for n = 15, no contamination 
γ MOM PWM EPM 
95% quantile    
-1  1.12 (16)  0.03 (3.9)    16.78 (216.29) 
-0.6  0.01 (1.21) -0.11 (0.57)      2.04 (10.03) 
-0.2 -0.08 (0.36) -0.06 (0.36)      0.47 (1.17) 
0 -0.06 (0.28) -0.04 (0.29)      0.25 (0.59) 
0.2 -0.04 (0.22) -0.03 (0.23)      0.13 (0.24) 
0.6 -0.02 (0.15) -0.01 (0.16)      0.03 (0.14) 
1 -0.01 (0.13)  0.01 (0.12) 

 
          0 (0.07) 
 

99% quantile    
-1 -0.03 (7.62) -0.25 (3.64) 5608.99 (127343.78) 
-0.6 -0.31 (1.07)   -0.2 (0.83)    45.76 (592.01) 
-0.2 -0.16 (0.46) -0.05 (0.56)        2.1 (7.68) 
0 -0.09 (0.36) -0.01 (0.45)      0.82 (2.18) 
0.2 -0.04 (0.29)  0.01 (0.36)      0.37 (0.94) 
0.6  0.01 (0.21)  0.04 (0.26)        0.1 (0.29) 
1  0.03 (0.18)  0.05 (0.2)      0.03 (0.13) 
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Table 3: Simulated bias (RMSE) for n = 15, contamination with F2γ,1 
γ MOM PWM EPM 
95% quantile    
-1 275.26 (7961.39) 66.05 (1914.74) 6533.39 (194002.23) 
-0.6    1.35 (27.59)   0.28 (6.7)     17.16 (344.15) 
-0.2   -0.04 (0.41)  -0.03 (0.39)        0.6 (1.71) 
0   -0.06 (0.28)  -0.04 (0.29)      0.25 (0.59) 
0.2   -0.06 (0.22)  -0.05 (0.23)      0.11 (0.34) 
0.6   -0.05 (0.16)  -0.04 (0.16)      0.02 (0.15) 
1   -0.03 (0.13) 

 
 -0.01 (0.13) 
 

          0 (0.08) 
 

99% quantile    
-1 130.79 (3799.35) 61.11 (1779.95) ---------1 
-0.6     0.83 (23.25)   0.43 (11.01) 8711.38 (254249.93) 
-0.2    -0.12 (0.53)   0.01 (0.66)      3.18 (16.54) 
0    -0.09 (0.36)  -0.01 (0.45)      0.82 (2.18) 
0.2    -0.06 (0.29)  -0.02 (0.35)      0.34 (0.91) 
0.6    -0.02 (0.21)   0.01 (0.25)      0.09 (0.3) 
1     0.01 (0.18)   0.03 (0.2)      0.04 (0.14) 

 
 

Table 4: Simulated bias (RMSE) for n = 15, contamination with Fγ,2 
γ MOM PWM EPM 
95% quantile    
-1 1.31 (16.61)  0.12 (4.05)     18.37 (222.04) 
-0.6 0.09 (1.35) -0.03 (0.61)        2.4 (11.09) 
-0.2 0.02 (0.4)  0.04 (0.4)      0.69 (1.51) 
0 0.05 (0.33)  0.07 (0.34)      0.46 (0.89) 
0.2 0.08 (0.3)    0.1 (0.31)      0.36 (0.66) 
0.6 0.15 (0.3)  0.15 (0.29)      0.34 (0.56) 
1 
 

  0.2 (0.33) 
 

 0.19 (0.31) 
 

     0.39 (0.59) 
 

99% quantile    
-1  0.06 (7.9) -0.19 (3.77) 5809.77 (127620.56) 
-0.6 -0.24 (1.16) -0.12 (0.89)    51.42 (611.72) 
-0.2 -0.06 (0.5)  0.08 (0.66)      2.93 (10.26) 
0  0.05 (0.45)  0.15 (0.58)      1.44 (3.69) 
0.2  0.14 (0.45)    0.2 (0.54)      0.95 (2.13) 
0.6  0.26 (0.49)  0.27 (0.52)      0.71 (1.33) 
1  0.33 (0.53)  0.31 (0.5)        0.7 (1.14) 

 

                                                 
1 In this case bias and RMSE are larger than 108 
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Table 5: Simulated bias (RMSE) for n = 45, no contamination 
γ MOM PWM EPM 
95% quantile    
-1  0.87 (6.32) -0.16 (0.67)    1.73 (6.36) 
-0.6       0 (0.6) -0.08 (0.31)    0.57 (1.46) 
-0.2 -0.04 (0.21) -0.02 (0.21)    0.18 (0.43) 
0 -0.02 (0.16) -0.01 (0.16)      0.1 (0.25) 
0.2 -0.01 (0.12) -0.01 (0.13)    0.05 (0.15) 
0.6 -0.01 (0.08)       0 (0.09)    0.01 (0.06) 
1       0 (0.07)       0 (0.07) 

 
       0 (0.03) 
 

99% quantile    
-1 -0.12 (3.08) -0.39 (0.76)  20.77 (185.22) 
-0.6 -0.26 (0.6) -0.13 (0.5)    2.59 (10.26) 
-0.2 -0.09 (0.3) -0.01 (0.35)    0.49 (1.17) 
0 -0.03 (0.22)       0 (0.26)    0.23 (0.52) 
0.2 -0.01 (0.17)  0.01 (0.21)      0.1 (0.25) 
0.6  0.01 (0.12)  0.02 (0.14)    0.02 (0.07) 
1  0.01 (0.1)  0.02 (0.11)         0 (0.02) 

 
 
3.2. Conclusions 

Results of the simulated experiments can be summarized as follows: 
• Bias and RMSE of both quantile estimates decrease when the sample size increases, 

which indicates that all of these estimators are consistent. There are a few exceptions 
in cases γ ϵ {-1, -0.6}, but it may be due to the random number generation procedure 
used for simulating GPD data, especially with contamination.  

• EPM method performs extremely bad in cases γ ϵ {-1, -0.6}, which is in agreement 
with the results reported in [17].  

• With a few exceptions, MOM and PWM method have negative bias in cases with no 
contamination and with contamination of the first type. In cases with the 
contamination of the second type, bias is positive. EPM method has strong positive 
bias in all cases (with or without contamination). 

• MOM and PWM method perform similarly when estimating both quantiles. This is 
not the case with EPM method, which shows the worse performance, both in terms 
of bias and RMSE, when estimating 99% quantile. EPM performs particularly bad in 
cases γ ϵ {-1, -0.6, -0.2}.  

• For both sample sizes and γ ϵ {-1, -0.6}, all the three methods (EPM, MOM, PWM) 
respond much better to contamination of the second type than to the contamination 
of the first type (bias and RMSE do not change significantly). PWM can be 
recommended for these cases, since it is less sensitive to contamination and performs 
better than the other methods for all combinations of parameters and sample sizes. 
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• For both sample sizes and γ ϵ {0.6, 1}, all the methods respond much better to 
contamination of the first type than to the contamination of the second type. EPM 
method can be recommended if there is some certainty about the value of the scale 
parameter (i.e. there is no contamination of the second type), in other cases MOM or 
PWM would be better choices. 

• For both sample sizes and γ ϵ {-0.2, 0, 0.2}, all the three methods perform well under 
both types of contamination. MOM and PWM can be recommended in these cases 
since they always outperform the EPM method. 

• Results obtained for cases with no contamination are in agreement with the 
simulation results given in [11] and [17]. Although the simulation study presented in 
[17] is related to estimating higher GPD quantile (99.9%) behavior of MOM, PWM 
and EPM methods leads to similar conclusions to the ones presented here. 

 

4. APPLICATION TO FINANCE 

 4.1. Estimating VaR parameter  
 

Banks, insurance companies, financial institutions (in general, anyone who takes 
part in financial transactions) need to know the approximate level of risk involved in their 
actions. Commonly used measure for that risk is the Value at Risk parameter (VaR). VaR 
is the maximum possible loss of a given speculative asset or a portfolio for a given time 
period, at a given confidence level. A way to obtain VaR estimates, in case of a single 
asset, according to [18] and [21], is explained below.   

Let I1, I2,... It be the prices of a single speculative asset given at discrete times  
t = 0, 1, 2... (period is usually day, week or month). Then, return within the period T 
(relative change of the value of the speculative asset, within the period T) is given by  
( )0

0

TI I
I

−    Return within the period T = 1 (daily, weekly, monthly return…) can be 

given in two forms: 

1

1

,t t
t

t

I I
s

I
−

−

−
=  (4.1) 

which is known as arithmetic return, or  

1log log ,t t tr I I −= −  (4.2) 

which is known as log-return. 

These quantities are close to each other if the ratio 
1

t

t

I
I −

is close to 1, but rt is more 

convenient for statistical modeling.  
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Let I0 be the market value of a speculative asset at the beginning of the period and  
r1, r2,...,rt  be log-returns within the period T. Then, the value IT at the end of the period T 
is 

0 exp ,T t
t T

I I r
≤

= ∑  (4.3) 

The T-day (week, months) loss GT is expressed in terms of returns as 

( ).T t
t T

G r
≤

= −∑  (4.4) 

Let β be the given probability (usually 95% or 99%). It follows that VaR (T; β) (the 
maximal loss within the period T, at the probability β), is given by 

( ){ }; ,T TF P G VaR T β β= ≤ =  (4.5) 

which means that VaR (T; β) is the β-quantile of the loss distribution, FT. The next steps 
are fitting the GPD model to the loss data over a suitable threshold and estimating the  
β-quantile of the loss distribution using formula (2.9). 

A well known difficulty that occurs when estimating VaR parameter is the 
weekend effect in financial markets, which is the difference in returns between Mondays 
and other days of the week. Precisely, stock returns on Monday are often significantly 
lower than those of the immediately preceding Friday and may be unreliable.  

Some of the earliest works devoted to the weekend effect are [9] and [15]. The 
subject still attracts the attention in economic literature (see, for example, [22]). 
The following techniques for dealing with the weekend effect are suggested in [21]: 

1. returns with respect to trading days: taking the prices for the given trading days 
and computing the returns; 

2. omitting Monday returns: omitting the days for which the prices are not 
recorded, including the consecutive day (Monday); 

3. distributing Monday returns: the return registered on Monday (after a gap on 
weekend) is equally distributed over Saturday, Sunday and Monday. 

For dealing with this and other calendar effects, it is plausible to fit a robust model. 
 
4.2. Example: estimating VaR parameter 

As an example for the VaR estimation technique, historical stock prices were 
considered for the company Tigar a. d. Pirot, in the period May 31, 2005 – December 31, 
2009. The data set consists of 1157 stock prices at consecutive trading days. The goal 
was to estimate parameters (1;0.95)VaR  and (1;0.99)VaR . Data were obtained from 
www.belex.rs. Daily returns were calculated as the first difference of the logarithm of 
daily prices. The loss data were obtained by multiplying the daily returns by -1.  

The original series of daily prices show a linear trend, while the daily return 
series seem to be stationary (Figure 1). The threshold value necessary for fitting the GPD 
model is obtained by visual inspection of the mean excess function of the loss data. It 
was noticed that this function is approximately linear starting from u = 0.04 (Figure 2), 
therefore, this value is taken for a threshold (according to [18]). 
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From POT-stability property follows that if the GPD model is consistent with a 
set of data for a given threshold u, then it is also consistent with the data for all thresholds 
u1 > u. This fact is applied in the present work, and threshold values u = 0.04, 0.06, 0.08 
are considered as well. 

  
Figure 1: Daily stock prices for the company Tigar a. d. Pirot (original data) and 
consecutive daily returns (with respect to trading days) 

Figure 2: Mean excess function for the loss data (trading days) 

The estimates for the (1;0.95)VaR  and (1;0.99)VaR  obtained using the daily returns, 
Monday-omitted daily returns and Monday-distributed daily returns are summarized in 
Tables 6 – 8 (V1 stands for VaR (1;0.95) estimate, V2 stands for VaR (1;0.99) estimate). 
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Table 6: Results obtained for returns with respect to trading days  

u Nu Method γ σ V1 V2 
 
0.04 

 
75 

EPM 0.0984 0.0292 0.0475 0.0899 
MOM 0.2448 0.0328 0.0483 0.0893 
PWM 0.2549 0.0331 0.0484 0.0893 

 
0.06 

 
43 

EPM  0.0020 0.0220 0.0535 0.0889 
MOM  0.1495 0.0236 0.0529 0.0882 
PWM  0.2380 0.0254 0.0522 0.0887 

 
0.08 

 
14 

EPM 0.0431 0.0247 0.0440 0.0848 
MOM  0.2158 0.0256 0.0378 0.0849 
PWM 0.2868 0.0271 0.0329 0.0852 

 
 
Table 7: Results obtained for Monday-omitted and Monday-distributed returns  
(γ and  σ  estimates are the same in both cases)  

u Nu Method γ σ V1 V2 V1     V2 
Monday- 
omitted returns 

Monday- 
distributed returns 

 
0.04 

 
57 

EPM 0.0396 0.0275 0.0457 0.0882 0.0304 0.0738 
MOM 0.1922 0.0310 0.0463 0.0876 0.0288 0.0747 
PWM 0.1915 0.0310 0.0463 0.0876 0.0288 0.0747 

 
0.06 

 
32 

EPM -0.0824 0.0205 0.0526 0.0868 0.0417 0.0744 
MOM  0.0993 0.0227 0.0515 0.0866 0.0380 0.0750 
PWM  0.1556 0.0239 0.0509 0.0870 0.0362 0.0755 

 
0.08 

 
11 

EPM  -0.1335 0.0214 0.0521 0.0839 0.0426 0.0721 
MOM  0.0572 0.0216 0.0479 0.0839 0.0347 0.0718 
PWM  0.0689 0.0218 0.0473 0.0839 0.0336 0.0717 

 
The results given in Tables 6 – 7 can be interpreted as follows: for example, 0.0475 in the 
sixth column of Table 6 means that the maximum possible loss that may happen in the 
period of one day, with the probability greater that 5% is equal to 4.75%.  
 
 
Table 8: Goodness of fit (fitting the GPD to the excesses over the threshold u = 0.04) 

Method Coefficient of determination Residual sum  of squares 
Using returns with respect to trading days 
EPM 0.9820 0.1136 
MOM 0.9868 0.0858 
PWM 0.9869 0.0852 

Using Monday-omitted returns 
EPM 0.9851 0.0722 
MOM 0.9883 0.0588 
PWM 0.9883 0.0588 
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4.3. Comparison with Belgrade Stock Exchange indices  
 

The reason for creating Belgrade Stock Exchange indices was to improve the 
information process, transparency and comparison of the market data. 

In order to compare risk estimates obtained for the company Tigar a.d. Pirot 
with the maximal and the average risk for investing on Belgrade Stock Exchange, the 
following indices were considered: 

1. BELEX15: leading index of the Belgrade Stock Exchange (describes the 
movement of prices for the 15 most liquid Serbian companies, which is 
calculated in real time);  

2. BELEXline: general share index of Belgrade Stock Exchange (calculated at the 
end of a trading day). 

Historical data for both indices in the period May 31, 2005 – December 31, 2009 are 
obtained from www.belex.rs. Results of risk estimation are summarized in Table 9. 
 
Table 9: Risk estimates for BELEX15 and BELEXline  

 VaR(1;0.95) 
estimate 

VaR(1;0.99) 
estimate 

BELEX15 0.0246 0.0484 
BELEXline 0.0176 0.0304 

 
Since (1;0.95)VaR  and (1;0.99)VaR  estimates obtained for the company Tigar 

a.d. Pirot are approximately equal to 0.048 and 0.09, respectively (estimates obtained for 
the largest sample), one can conclude that the risk involved in investing in this 
company’s shares is approximately two times greater than the risk for investing in the 
most liquid shares, and approximately three times greater than the general risk involved 
in investing on Belgrade Stock Exchange. The information obtained in this way is meant 
to help the investor to compare liquidity of different companies and make a good 
decision regarding the investment. 
 
4.4. Conclusions  
 
The results obtained for estimating risk parameters for the company Tigar a. d. Pirot lead 
to the following conclusions: 

• Estimates obtained for (1;0.95)VaR  and (1;0.99)VaR  using the Monday- 
omitted returns are not significantly different from those obtained using the 
returns with respect to trading days. It means that stock prices registered on 
Mondays were not too different from the prices registered on other trading days, 
i.e. the weekend effect did not have a significant impact in this situation. 

• Estimates obtained for (1;0.95)VaR  and (1;0.99)VaR  using the Monday- 
distributed returns are significantly lower than those obtained for returns with 
respect to all trading days and Monday-omitted returns, although the estimates 
obtained for parameters γ and σ are exactly the same, and so is the number of 
excesses. This is due to the fact that sample size is greater in these cases, which 
affects the formula (2.9). 
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• It was noticed that the γ estimates change significantly with the sample size  (i.e. 
number of excesses above the threshold). It is true for all the three estimation 
methods. However, both VaR  estimates ( (1;0.95)VaR  and  (1;0.99)VaR ) are 
still very stable in these cases. The only exceptions are values obtained for the 
threshold value u = 0.09. However, these estimates are obtained from very small 
samples and are less reliable. It is in agreement with the simulation results given 
in Section 3.2, precisely, with the fact that for values of γ close to 0, all the three 
estimation methods show good performance (small bias and RMSE) and react 
well to the contamination of both types. Table 8 indicates that the goodness of 
fit of GPD to excesses over the threshold u = 0.04 is very good with all the three 
estimation methods. Therefore, VaR estimates obtained with all the three 
estimation methods, MOM, PWM and EPM, are reliable. 

• Another way of checking the adequacy of VaR estimates is to compute failure 
rate (the proportion of the number of times the observations exceed the 
forecasted VaR to the number of all observations). VaR estimate is adequate if 
the failure rate is close to pre-specified VaR level, 1- β. For this example, failure 
rates are approximately 0.052 for (1;0.95)VaR  estimates and 0.011 for 

(1;0.99)VaR  estimates. Results are satisfactory in both cases. 
 

5. CONCLUDING REMARKS 

The purpose of this paper was to compare different methods for estimating 95% 
and 99% quantiles of the generalized Pareto distribution. It was done through a Monte 
Carlo simulation study. Results indicate that, in most cases, it is possible to choose 
beetween MOM, PWM and EPM method in such a way to obtain acceptable estimates, 
which are not affected too much by small changes in model assumptions. 

The three methods are successfully applied to the real data example, estimating 
VaR parameter for the company Tigar a.d. Pirot, taking into account some difficulties 
characteristic for that type of problems, such as threshold selection and weekend-effect. 
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