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Abstract: In this paper, an electromagnetism-like approach (EM) for solving the 

maximum set splitting problem (MSSP) is applied. Hybrid approach consisting of the 

movement based on the attraction-repulsion mechanisms combined with the proposed 

scaling technique directs EM to promising search regions. Fast implementation of the 

local search procedure additionally improves the efficiency of overall EM system. The 

performance of the proposed EM approach is evaluated on two classes of instances from 

the literature: minimum hitting set and Steiner triple systems. The results show, except in 

one case, that EM reaches optimal solutions up to 500 elements and 50000 subsets on 

minimum hitting set instances. It also reaches all optimal/best-known solutions for 

Steiner triple systems.  
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1. INTRODUCTION 

Let S be a finite set with cardinality m = |S| and let a family of subsets S1, ..., Sn 

 S be given. A partition of S is a disjoint pair of subsets (P1, P2) of S such that their 

union is equal to S, i.e. P1  P2 =  and  P1  P2 = S.  

                                                 
1  This research was partially supported by Serbian Ministry of Education and Science 
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We would like to stress that the style files and the template should not be 

manipulated and that the guidelines regarding font sizes and format should be adhered to. 

This is to ensure end product to be as homogeneous as possible.  

Let us define the splitting condition: a subset Sk  S  is split by the partition (P1, 

P2) if and only if Sk is not disjoint with P1 and P2, i.e. Sk  P1   and Sk  P2   . An 

equivalent expression of the splitting condition is the statement that there exist a,b  Sk 

for which holds a  P1 and b  P2.  

Then, the maximum set splitting problem (MSSP) can be defined as finding the 

partition (P1, P2) that splits maximal number of given subsets S1, ..., Sn. The MSSP, as 

well as weighted variant of the problem, is NP-hard in general ([11]). The variant of the 

problem, when all subsets in the family are of fixed size r, r ≥ 2 is also NP-hard. 

Furthermore, the MSSP is APX complete, i.e. cannot be approximated in polynomial 

time within a factor greater than 11/12, as can be seen from [13].  

Let us demonstrate some properties of MSSP on two small illustrative examples. 

Example 1. Let our first set consist of four elements (m=4) and four subsets 

(n=4). The subsets are: S1 = {1,3}; S2 = {2,4}; S3 ={1,4}; S4 = {2,3}. One of the optimal 

solutions is the partition (P1,P2), P1 = {1,2}; P2 = {3,4}. The optimal objective value is 

equal to n=4, because P1  Sk    and P2  Sk   , for all k=1,2,3,4.  

Example 2. Let our second set consist of four elements (m=4) and five subsets 

(n=5). The subsets are: S1 = {1,2,3}; S2 = {1,4}; S3 ={2,4}; S4 = {3,4}; S5 = {1,2,4}. One 

of the optimal solutions is the partition (P1,P2), P1 = {1,2,3}; P2 = {4}. The optimal 

objective value is 4 and all subsets are split, except the first subset.  

In the following section, the existing integer programing models for MSSP and 

some previous work are given. Section 3 describes EM solution procedure. Experimental 

results on two classes of instances, and short discussion of the results obtained from the 

proposed EM solution procedure are presented in Section 4. The final section presents 

conclusions and ideas for a future work. 

 

2. PREVIOUS WORK 

Kernelization method based on a probabilistic approach is proposed in [4,5]. 

Running time of a subset partition technique is bounded by O(2
q
), where q is the number 

of split subsets. That algorithm can be de-randomized, which leads to a deterministic 

parameterized algorithm of running time O(4
q
) for the weighted maximum set splitting 

problem. This indicates that the problem is fixed-parameter tractable. The kernelization 

technique is consequently used in [7,8,17,18].  

The first quadratic integer programming (QIP) formulation of the MSSP, given 

by (1)-(3), is introduced in [2]. That formulation and its semidefinite programming (SDP) 

relaxation were used for constructing the 0.724-approximation algorithm of the MSSP. 

By  improving the rounding method and applying a tighter analysis in [21], the SDP was 

strengthened to a slightly better, 0.7499-approximation algorithm. Variables of QIP 

formulation are defined as: 
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Then QIP model is defined as: 
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In contrast to the classical branching on parts of the solution, 

inclusion/exclusion branching proposed in [19] is used to branch on the requirements 

imposed on problems. That technique was consequently used for the partial dominating 

set and the parameterised problem of the k-set splitting. 

The MSSP is taken into account in the stationary set splitting game ([15]). Two 

players participate in this game: the unsplit and the split,  where the unsplit are choosing 

stationarily many countable ordinals and the split are trying continuously to divide them 

into two stationary pieces. In [15], it is shown that it is possible to force a winning 

strategy either for both players, or for none of them. This gives a new insight into the 

second-order monadic logic of order. 

The first integer linear programming (ILP) formulation of MSSP, given by (4)-

(8) is introduced in [16]. In that paper, a genetic algorithm (GA) for solving MSSP is also 

proposed. The GA uses the binary encoding, standard genetic operators adapted to the 

problem and caching technique. Experimental results using CPLEX solver based on the 

ILP formulation and proposed GA were performed on two sets of instances from the 

literature: minimum hitting set and Steiner triple systems. The results show that the 

Steiner triple systems seem to be much more challenging for maximum set splitting 

problems since the CPLEX solved to optimality, within two hours, only two instances up 

to 15 elements and 35 subsets. Parameters and decision variables of ILP formulation are 

defined as: 
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Then MSSP is modeled as ILP program: 
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{0,1} , 1,..., ; {0,1} , 1,...,ik k n y i mz  (7) 

 

3. EM IMPLEMENTATION 

An electromagnetism-like (EM) metaheuristic is a powerful algorithm for global 

optimization that converges rapidly to the optimum ([3]). In the field of combinatorial 

optimization, the method is used either as a stand-alone approach or an accompanying 

algorithm for other methods. A detailed description of EM is not in the scope of this 

paper, but several recent successful applications should be mentioned: 

 Global optimization ([1]); 

 Response time variability ([10]); 

 Flow path design of undirectional AGV systems ([12]); 

 Strong minimum energy topology ([14]); 

 Blind multiuser detection over the multipath fading channel ([20]). 

EM is a population-based algorithm that can solve nonlinear optimization 

problems. In the following text, each member pj, j = 1, 2, ... , Npop of the population 

maintained by the algorithm will be referred to as EM point (or solution). The population 

itself will be referred to as a solution set. Since each point is a real vector of the length m, 

whose meaning is described in detail later, the i-th coordinate of point pj is denoted as pji. 

The proposed EM algorithm for solving MSSP is given by the following pseudo code: 

 

Program 1: EM pseudo-code 

program MSSP_EM(Output) 

begin 

 MSSPInput; 

 Init;  

 iter:=0; 

 while iter < Niter do 

  begin 

   iter:=iter+1;    

   for j:=1 to Npop do 

    begin 

      fv:=ObjFunction(pj,y,z); 

      LocalSearch(y,z,fv); 

      Scaling(pj,y); 

    end; 

   CalculateChargesForces; 

   Moving; 

  end; 

 PrintResults; 

end. 

When the reading of a test instance is completed by a procedure MSSPInput, 

EM points in the first iteration are randomly initialized from set [0,1]
m
 (procedure Init). 
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In each iteration and for each EM point, the program calculates the value of the objective 

function, applies the local search, and performs the scaling procedure (ObjFunction, 

LocalSearch and Scaling, respectively). Afterwards, calculation of charges and forces 

using EM attraction-repulsion mechanism is applied, resulting in moving the points 

towards a local maxima (procedures CalculateChargesForces and Moving). At the end, 

all obtained results are exhibited by procedure PrintResults. 

 

3.1 Objective function and local search 

This section gives a description of the evaluating the objective function 

ObjFunction(pj,y,z) mentioned in Program 1. In that procedure, the objective 

function has only one input parameter, which is a given EM point pj, while arrays y and z 

are output parameters defined in the same way as decision variables y and z in ILP 

formulation (4)-(7). Therefore, yi=1 means that the element i belongs to P1, while yi=0 

means the opposite (i belong to P2). In the case when the subset k is split, holds zk=1, 

otherwise zk=0.  

For a given EM point pj, a partition (P1,P2) is established by rounding in the 

following way: if the i-th coordinate of the pj is equal to, or greater than 0.5, then the 

element i is assigned to P1, otherwise it is assigned to P2. Mathematically, by using the 

decision variable y, it can be defined as 
1, 0.5

0, 0.5

ji

ji

i

p
y

p
. Values of decision variable z 

are obtained by checking if the subset Sk is split by the given partition (P1,P2), or not, 

while the objective value is the number of split subsets, i.e. the number of decision 

variables zi,, which has the value 1, or is equal to
1

k

n

k

z . Note that all EM points are 

feasible, since the problem has no forbidden partitions. 

After objective function for each EM point is computed, a possible improvement 

is tried by local search (LS) procedure. Local search (LS) is a supplemental procedure to 

perform a quick exploration around a solution. The motivation behind the utilization of 

LS is to explore the possibility of finding a solution with a better objective function. In 

this work, a 1-swap local search is used and adapted to MSSP into a simple, but very 

effective procedure LocalSearch described in Algorithm 2. 

The proposed local search procedure uses the first improvement strategy, which 

means that it is immediately applied after the detection of an improvement of the 

solution. After that, it is continuously applied until no more improvements in the number 

of split sets are observed, i.e. when for each i =1, …, m local search does not produce a 

greater number of split sets than the current one. 

 

Program 2: Local search pseudo-code 

procedure LocalSearch(y,z,fv) 

begin 

 repeat 

  impr:=false; 

  i:=0; 

  while not impr and (i<m) do 

   begin   
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     i:=i+1; 

     nfv:=Change(y,z,i); 

     if(nfv > fv) then 

      begin 

       impr:=true; 

       fv:=nfv; 

       y[i]:=1-y[i];        

      end 

   end  

until not impr; 

end; 

Function Change(y,z,i) firstly computes the number of sets Sk split by exchanging 

element i from P1 to P2 , if the element i previously belonged to P1 (or conversely, from 

P2 to P1 if i previously belonged to P2). Then, the number of sets Sk not split by 

exchanging the element i is counted. Subsequently, the new objective value nfv is equal 

to the old objective value fv plus the difference between the numbers of split and not-split 

sets produced by the exchanging the element i. Note that, in the function Change(y,z,i), it 

is enough to search only the subsets Sk that contain the element i ( kP i ),whose number 

is usually substantially smaller than the total number of all subsets n. Therefore, in order 

to speed-up the evaluation of LocalSearch() function, in the preprocessing part of the 

program (procedure Init), for each element i, an array of indices of the subsets Pk, 

containing element i is memorized. Therefore, to evaluate the function Change(y,z,i), the 

only thing needed is to search inside these arrays instead to search all subsets . 

 

3.2. Scaling procedure 

In this implementation, scaling procedure is applied, which additionally moves 

points towards solutions obtained by local search. It is considered only with some factor 

  [0,1] in order to prevent falling into a local optimum and being trapped there. An EM 

point pj is moved by the following formula: 

 

pji
new 

=   yi + (1- )  pji (8) 

 

where pji
new

 is the new value of the i-th coordinate of EM-point pj while yi 

denotes a sequence y of the j-th EM point in the current iteration after the local search 

procedure is finished. 

Choosing an appropriate value of the scale factor   is a significant step for 

governing the search process. In the extreme case, when   is close to 1, the search 

process will likely fall into a local optimum and be trapped. Another extreme case, when 

  is equal to 0, obviously represents no-scaling situation. Experiments have showed that 

  = 0.1 is a good compromise that yields satisfactory results. 

 

3.3. Attraction-repulsion mechanism 

As it can be seen from the literature, the strength of the EM algorithm lies in the 

idea of directing EM points towards local optima utilizing an attraction-repulsion 

mechanism. Therefore, after applying the local search procedure to each solution in the 
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current population, the solutions must be moved towards promising regions in order to 

get closer to the optimal solution. 

In this process, each EM point is considered as a charged particle. The amount 

of charge relates to the value of the objective function at the point, which also determines 

the magnitude of attraction or repulsion of the point over the solution set. 

Mathematically, the charge of each sample point is calculated by the following formula: 

1
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The force between two points is computed using a mechanism similar to 

electromagnetism theory for the charged particles. In this mechanism, the force exerted 

on a point via other points is inversely proportional to the distance between the points 

and directly proportional to the product of their charges. The point that has a better 

objective value attracts the other points, and the point with the worse objective value 

repels the others. The computation of this force is given by (10). The power of attraction 

or repulsion of charges is calculated as follows: 
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where 
jlp p  is the Euclidean distance between EM points pl and pj. 

 

Using the Move procedure of the electromagnetism approach, current solutions 

are by (11) shifted towards the best ones. All the EM points are moved, except the 

current best solution. The vector of the total force exerted on each point from the other 

points, determines the direction of movement for the corresponding EM point. Therefore, 

the total forces are normalized (
j

j

j

F
F

F
), which also implies that infeasible solutions 

cannot be produced. The movement of each EM point (except the best EM solution) is 

calculated by (11), using a random step length  generated from uniform distribution 

from the set [0,1]. This step length is used, since, as can be seen in [3], the candidate 

solutions have a nonzero probability to move to the unvisited solution in this direction 

when random step length is selected. 
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4. COMPUTATIONAL RESULTS 

The tests are performed on a single processor Intel 2.5 GHz with 1GB memory, 

under Windows XP operating system. The algorithm is coded in C programming 

language and tested on two classes of instances from literature: minimum hitting set 

(MHS) instances introduced in [6] and Steiner triple systems (STS) described in [9]. For 

MHS instances, all optimal solutions are known and are equal to n. All optimal solutions 

are reported in [16]; they are obtained by CPLEX solver, except the largest MHS 

instance, when CPLEX stopped its work with "out of memory" status. In that situation, 

with m=500, n=50000, GA in [16] obtained solution, with all split subsets (objective 

value is equal to n=50000), which verified the optimality of that solution. In the case of 

the STS instances, optimal solutions are known only for the first two instances (also 

obtained by CPLEX solver in [16]), and they are strictly smaller than n. 

The parameters of EM are:   = 0.1, Niter=20 and Npop=5. The EM ran 20 times 

for each instance, and the results are summarized in Table 1 and Table 2. The tables are 

organized as follows: 

 the first and the second column contain m and n; 

 the third column contains the optimal solution if it is known in advance. If an 

optimal solution is not known, next column displays best-known solution up to 

date; 

 next three columns present the EM best solution (EMBbest B), running time in 

seconds needed to reach that solution (t) and the average total running time (ttot), 

respectively; 

 the last two columns (agap and σ) contain information on the average solution 

quality: agap is a percentage gap defined as 
20

1

1

20
r

r

agap gap , where 

100 r
r

opt EM
gap

opt
 in cases when an optimal solution is known or 

100 r

r

best EM
gap

best
 in other cases. EMr represents the EM solution 

obtained in the r-th run, while σ is the standard deviation of gapr, r=1,2,...,20, 

obtained by formula 
20

2

1

1

20
r

r

gap agap . 

Table 1: EM results on MHS instances 

m  n Opt EMBbestB 

t 

(sec) 

ttot 

(sec) 

agap 

(%) 

σ 

(%) 

 50  1000  1000 opt  0.014   0.158 0.000 0.000 

 50 10000 10000 opt  0.333   3.212 0.000 0.000 
100  1000  1000 opt  0.024   0.334 0.000 0.000 

100 10000 10000 opt  0.665  10.593 0.000 0.000 

100 50000 50000 49998 81.305 216.316 0.008 0.002 
250  1000  1000 opt  0.068   1.062 0.000 0.000 

250 10000 10000 opt  2.454  45.393 0.000 0.000 

500  1000  1000 opt  0.150   2.336 0.000 0.000 
500 10000 10000 opt  4.841  94.473 0.000 0.000 

500 50000 50000 opt 26.984 486.124 0.000 0.000 

 



 J., Kratica / An Electromagnetism-Like Method 39 

 

Table 2: EM results on STS instances 

m  n Opt Best EMBbestB 

t 

(sec) 

ttot 

(sec) 

agap 

(%) 

σ 

(%) 

  9   12 10 10 opt 0.001  0.001 0.000 0.000 
 15   35 28 28 opt 0.001  0.003 0.000 0.000 

 27  117 -  91  best 0.001  0.005 0.000 0.000 

 45  330 - 253  best 0.010  0.030 0.000 0.000 
 81 1080 - 820  best 0.054  0.173 0.000 0.000 

135 3015 - 2278 best 0.384  0.905 0.000 0.000 

243 9801 - 7381 best 8.066 14.953 0.000 0.000 

 

As it can be seen from Tables 1 and 2, EM reaches all optimal/best-known 

solutions, except one MHS instance (m=100, n=50000). Overall running time is 

relatively short, for example, for MHS instances it is less than 9 minutes, while for STS 

instances the running time is less than 15 seconds.  

In order to clarify EM performance, direct comparison with the previous GA 

approach from [16] is performed. Tables 3 and 4 contain data organized as follows: 

 the first and the second column contain m and n; 

 the third column contains the optimal solution if it is known in advance. If an 

optimal solution is not known, the next column displays currently best-known 

solution; 

 next two columns present the GA best solution (bestB) and average total running 

time (ttot), respectively; 

 last two columns contain the EM results, presented in the same way as for the 

GA. 

 

Table 3: Direct comparison of the results on MHS instances 
Inst. GA EM 

m  n Opt bestB ttot (sec) bestB ttot (sec) 

 50  1000  1000 opt 2.582   opt   0.158 
 50 10000 10000 opt 60.039  opt   3.212 

100  1000  1000 opt 4.67    opt   0.334 

100 10000 10000 opt 168.603 opt  10.593 
100 50000 50000 opt 683.147 49998 216.316 

250  1000  1000 opt 8.626   opt   1.062 
250 10000 10000 opt 336.894 opt  45.393 

500  1000  1000 opt 13.325  opt   2.336 

500 10000 10000 opt 437.909 opt  94.473 

500 50000 50000 opt 2086.517   opt 486.124 

 

Table 4: Direct comparison of the results on STS instances 
Inst. GA EM 

m  n Opt bestB ttot (sec) bestB ttot (sec) 

  9   12 10 best 0.193  best  0.001 

 15   35 28 best 0.233  best  0.003 
 27  117  91  best 0.382  best  0.005 

 45  330 253  best 0.914  best  0.030 

 81 1080 820  best 2.893  best  0.173 
135 3015 2278 best 7.858  best  0.905 

243 9801 7381 best 65.409 best 14.953 
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The direct comparison between GA and EM shows that, although GA has 

reached all optimal/best-known solutions, EM is much faster, sometimes more than one 

order of magnitude. Therefore, computational results confirm proposed EM approach as 

an efficient and robust method for solving MSSP. 

 

5. CONCLUSIONS 

This paper is devoted to exploring the results of the new electromagnetic like 

approach applied to the maximum set splitting problem. Combining scaling technique 

with a basic attraction-repulsion mechanism boosts the performances of the proposed 

algorithm. The fast local search procedure additionally improves performances of the 

system.  

In order to show the efficiency of the proposed hybrid EM, a number of experiments are 

carried out, and the results are compared with the optimal/best-known solutions taken 

from the literature. The obtained results clearly indicate that EM is a useful tool for 

solving this problem. 

Further research should be directed to parallelization of the EM and run it on a 

powerful multiprocessor computer. Another direction can be incorporation of this method 

in some exact solution framework. 
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