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Abstract: We are given a graph G = (V,E), terminal set K ⊆ V and diameter d > 0. Links
fail stochastically and independently with known probabilities. The diameter-constrained
reliability (DCR for short) is the probability that the K-diameter is not greater than d in the
subgraph induced by non-failed links.

The contributions of this paper are two-fold. First, the computational complexity of
DCR-subproblems is discussed in terms of the number of terminals k = |K| and diameter
d. Here, we prove that if d > 2, the problem is NP-Hard when K = V, and second, we
compute the DCR efficiently for ladders and Spanish fans.
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1. INTRODUCTION

The diameter-constrained reliability (DCR for short) is a metric that subsumes
the classical network reliability (CLR for short). Both metrics serve to model the
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reliability of communication networks. Vast literature exists for the CLR, see [5].
The DCR was introduced by [8], inspired in delay-sensitive applications over
the Internet infrastructure. It can model situations where there are limits in the
acceptable number of hops. Among these we have latency-sensitive contexts,
point-to-point and voice-over-IP applications. Arnon Rosethal proved that the
CLR is inside the class of NP-Hard problems [10]. As a corollary, the general
DCR isNP-Hard as well, hence intractable unless P = NP.

Consider a network modeled by a simple graph G = (V,E) with |V| = n nodes
and |E| = m links, a distinguished set of nodes K ⊆ V called terminals, k = |K| and
an integer d that represents the maximum acceptable number of hops. Links fail
stochastically and independently, ruled by a vector p = (p1, . . . , pm).

The DCR is the probability that the terminals of the resulting subgraph remain
connected by paths composed by d links, or less. This number is denoted by
Rd

K,G(p).
The focus of this paper is on the computational complexity of DCR subprob-

lems, in terms of k and d. The article is organized in the following manner. Formal
definitions of the CLR and DCR problems are provided as particular instances
of stochastic binary systems in Section 2. The computational complexity of the
DCR is discussed in Section 3. The main contribution of this paper is a new result
on complexity theory, provided in Section 4. Specifically, we prove that the DCR
is in the computational class of NP-Hard problems in the all-terminal scenario
(k = n) with a given diameter d ≥ 3. In Section 5, the DCR is computed for
certain elementary families. Polynomial time algorithms for the DCR evaluation
are given for two specific families. Concluding remarks and open problems are
summarized in Section 6.

2. TERMINOLOGY

We are given a system with m components. These components are either “up”
or “down”, and encoded by x = (x1, . . . , xm). Additionally we have a structure
function φ : {0, 1}m → {0, 1} such that φ(x) = 1 if and only if the system works
under state x. When the components work independently and stochastically, with
certain probabilities of operation p = (p1, . . . , pm), the pair (φ, p) defines a stochastic
binary system, or SBS for short, following the terminology of Michael Ball [1]. An
SBS is coherent whenever x ≤ y implies that φ(x) ≤ φ(y), where the partial order
set (≤, {0, 1}m) is bit-wise (i.e., x ≤ y if and only if xi ≤ yi for all i ∈ {1, . . . ,m}). If
{Xi}i=1,...,m is a set of independent binary random variables with P(Xi = 1) = pi and
X = (X1, . . . ,Xm), then r = E(φ(X)) = P(φ(X) = 1) is the reliability of the SBS.

Now, consider a simple graph G = (V,E), a subset K ⊆ V and a positive integer
d. Let us choose an arbitrary order of the link-set E = {e1, . . . , em}, ei ≤ ei+1. For each
subgraph Gx = (V,Ex) with Ex ⊆ E, we identify a binary word x ∈ {0, 1}m, where
xi = 1 if and only if ei ∈ Ex; this is clearly a bijection. A subgraph Gx = (V,Ex)
is d-K-connected if dx(u, v) ≤ d,∀{u, v} ⊆ K, where dx(u, v) is the distance between
nodes u and v in the graph Gx. Then, we define the structure φ : {0, 1}m → {0, 1}
such that φ(x) = 1 if and only if the graph Gx is d-K-connected. If we assume
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nodes are perfect but links fail stochastically and independently ruled by the
vector p = (p1, . . . , pm), the pair (φ, p) is a coherent SBS. Its reliability, denoted by
Rd

K,G(p), is called diameter constrained reliability, or DCR for short. A particular case
is Rn−1

K,G (p), called classical reliability, or CLR for short.
In all coherent SBS, a pathset is a state x such that φ(x) = 1. A minpath is a state

x such that φ(x) = 1 but φ(y) = 0 for all y < x (i.e., a minimal pathset). A cutset
is a state x such that φ(x) = 0, while a mincut is a state x such that φ(x) = 0 but
φ(y) = 1 if y > x (i.e., a minimal cutset).

3. COMPLEXITY

The classNP is the set of problems polynomially solvable by a non-deterministic
Turing machine; see [6]. A problem is NP-Hard if it is at least as hard as every
problem in the setNP (formally, if every problem inNP has a polynomial reduc-
tion to the former). It is widely believed that NP-Hard problems are intractable
(i.e., there is no polynomial-time algorithm to solve them). An NP-Hard prob-
lem is NP-Complete if it is inside the class NP. Valiant defines the class #P of
counting problems, such that testing whether an element has a property or not
can be accomplished in polynomial time [12]. A problem is #P-Complete if it is
in the set #-P and it is at least as hard as any problem of that class.

Computing the reliability of a coherent SBS is at least as hard as recognition
and counting minimum cardinality mincuts/minpaths; see [1]. Arnon Rosenthal
proved that the CLR isNP-Hard, showing that the minimum cardinality mincut
recognition is precisely Steiner-Tree problem, included in Richard Karp’s list [10].
The CLR for both two-terminal and all-terminal cases are stillNP-Hard, as proved
by reduction to counting minimum cardinality s− t cuts in [9]. As a consequence,
the general DCR is NP-Hard as well. Later effort has been focused to particular
cases of the DCR, in terms of the number of terminals k = |K| and diameter d.
When d = 1, every pair of terminals must be linked by a link, R1

K,G =
∏
{u,v}⊆K pu,v,

where pu,v denotes the probability of operation of link {u, v} ∈ E, and pu,v = 0 if
{u, v} < E. The problem is still simple when k = d = 2. In fact, R2

{u,v},G = 1 − (1 −
pu,v)

∏
w∈V−{u,v}(1−pu,wpw,v). Héctor Cancela and Louis Petingi proved that the DCR

isNP-Hard when d ≥ 3 and k ≥ 2 is a fixed input parameter [4], in strong contrast
with the case d = k = 2. The literature offers at least two proofs that the DCR has
a linear-time algorithm when d = 2 and k is a fixed input parameter. Eduardo
Canale et. al. present a recursive proof, while Pablo Sartor presents an explicit
expression for R2

K,G that is computed in a linear time of elementary operations.
Figure 1 summarizes the known results for the computational complexity of the
DCR in terms of k and d.

4. MAIN THEOREM

The DCR belongs to the class of NP-Hard problems in the all-terminal case with
diameter d ≥ 3. The main source of inspiration is [4], where the authors prove that
the DCR isNP-Hard when d ≥ 3 and k ≥ 2 is a fixed input parameter. First, they
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Figure 1: DCR Complexity in terms of the diameter d and number of terminals k = |K|

show that the result holds for k = 2, and they further generalize the result for
fixed k ≥ 2. For our purpose it will suffice to revisit the first part. Before, we state
a technical result first proved in [2]. Recall that a vertex cover in a graph G = (V,E)
is a subset V′ ⊆ V such that V′ meets all links in E. The graph G is bipartite if
there exists a bipartition V = V1 ∪ V2 such that E ⊆ V1 × V2.

Lemma 4.1. Counting the number of vertex covers of a bipartite graph is #P-Complete.

Proposition 4.2. The DCR isNP-Hard when k = 2 and d ≥ 3.

Proof. Let d′ = d − 3 ≥ 0 and P = (V(P),E(P)) a simple path with node set
V(P) = {s, s1, . . . , sd′ } and link set E(P) = {{s, s1}, {s1, s2}, . . . , {sd′−1, sd′ }}. For each
bipartite graph G = (V,E) with V = A ∪ B and E ⊆ A × B, we build the following
auxiliary network:

G′ = {(A ∪ B ∪ V(P) ∪ {t},E ∪ E(P) ∪ {{sd′ , a}, a ∈ A} ∪ {{b, t}, b ∈ B}, (1)

where all links of G are perfect but the ones from I = {{sd′ , a}, a ∈ A} ∪ {{b, t}, b ∈
B}, which fail independently with identical probabilities p = 1/2. Consider the
terminal set K = {s, t}. The auxiliary graph G′ is illustrated in Figure 2. The
reduction from the bipartite graph to the two-terminal instance is polynomial.

A set cover A′ ∪ B′ ⊂ A ∪ B induces a cutset I′ = {{sd′ , a}, a ∈ A′} ∪ {{b, t}, b ∈ B′}
(i.e. if all links in I′ fail, the nodes {s, t} are not connected). Reciprocally, that
cutset determines a set cover. Therefore, the number of cutsets |C| is precisely the
number of vertex covers of the bipartite graph |B|. Moreover:

|B| = 2|A|+|B|(1 − Rd
{s,t},G′ (1/2)).

Thus, the DCR for the two-terminal case is at least as hard as counting vertex
covers of bipartite graphs.

Now we prove our main result:
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Figure 2: Example of auxiliary graph G′′ with terminal set {s, t} and d = 6, for the particular bipartite
instance C6.

Theorem 4.3. The DCR isNP-Hard when k = n and d ≥ 3.

Proof. Extend the auxiliary graph G′ = (V′,E′) to G′′ = (V′′,E′′), where V′′ = V′

and E′′ = E′∪{{a, a′}, a , a′, a, a′ ∈ A}∪ {{b, b′}, b , b′, b, b′ ∈ B}. In other words, just
add links in order to connect all nodes from A, and all nodes from B. We keep the
same probabilities of operation, where new links are perfect.

Consider now the all-terminal case K = V′′ for G′′, and given diameter d ≥ 3.
The key is to observe that the cutsets in the all-terminal scenario for G′′ are
precisely the s − t cutsets in G′, and they have the same probability. Indeed, each
pair of terminals from the set A are directly connected by perfect links; the same
holds in B. The distance between s and sd′ is d′ = d − 3 < d, so these nodes (and
all the intermediate ones) respect the diameter constraint. Finally, if there were
an s − t path (i.e. a path from s to t), the diameter of the resulting subgraph of G′′

would be exactly d. Therefore, Rd
{s,t},G′ = Rd

V′′,G′′ , and again:

|B| = 2|A|+|B|(1 − Rd
{s,t},G′ (1/2)) = 2|A|+|B|(1 − Rd

V′′,G′′ (1/2)).

Thus, the DCR for the all-terminal case is at least as hard as counting vertex covers
of bipartite graphs.

5. POLYNOMIAL ALGOROTHMS FOR SPECIAL TOPOLOGIES

In this section, we provide expressions for computing the DCR in elementary
graphs (this is, graphs with maximum degree 2), as well as two efficient algorithms
to find the DCR in non-elementary families, to know, ladders and Spanish fans.

5.1. Elementary Graphs
An elementary graph G has maximum degree ∆G = 2. If G is not connected,

its DCR is null. The other possible graphs are either paths or cycles.

An elementary path Pn = {x1, . . . , xn} with terminal nodes K = {x1, xn} has a
trivial expression for the DCR. Indeed, Rd

{x1,xn},Pn
=

∏n−1
i=1 p(xixi+1)1{d≥n−1}, where 1{x}

is one if and only if x is true, and 0 otherwise.
In the cycle Cn = ({x1, . . . , xn}, {xn, x0} ∪ {xi, xi+1}i=1,...,n−1) with n ≥ 3 and K =

{x0, xi} for some i ≤ bn/2c, a straightforward discussion leads to the conclusion
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that Rd
{x0,xi},Cn

= 0 when d < i, Rd
{x0,xi},Cn

=
∏i−1

j=0 p(x jx j+1) when i ≤ d < n − i and

Rd
{x0,xi},Cn

= 1− (1−
∏i−1

j=0 p(x jx j+1))(1− p(xn, x0)
∏n−1

j=i p(x jx j+1)) when d ≥ n− i, being
the latter expression identical to the classical two-terminal reliability for the cycle.

We remark that the the general DCR computation of bipartite graphs is, in
general,NP-Hard. The hardness is a corollary of Theorem 4.3. An open problem
is to find the DCR in complete graphs.

5.2. DCR in ladders and Spanish fans
Now we illustrate the exact computation of the DCR for particular graph

topologies. We start by a topology that is simple yet not trivial, namely the
“ladder graphs”. This allow us to see an example of how the existence of diameter
constraints adds complexity to the problem when compared to the CLR. We will
present an algorithm to find the two-terminal CLR for ladders with any length
l. Then, we extend it to compute the two-terminal DCR. Finally, we develop a
similar discussion for another family that we call “Spanish fan”.

5.2.1. Ladders
Let us work with a family of networks Ll whose topologies, shown in Fig. 3,

are defined by a natural parameter l > 1, called the number of “steps” of the
ladder.

u0 u1 u2 ul−1 ul

v0 v1 v2 vl−1 vl

a1 a2 al

c1 c2 c3 cl cl+1

b1 b2 bl

Figure 3: The ladder network

We set as terminal nodes K = {u0, vl} and we want to find the connectedness
probability for nodes u0 and vl (with and without length constraints). We assume
nodes are perfect but links fail independently with known probabilities. We
denote α1, . . . , αl the reliability of links a1, . . . , al; β1, . . . , βl the reliability of links
b1, . . . , bl; and γ1, . . . , γl+1 the ones from links c1, . . . , cl+1. Finally, ᾱi, β̄i, γ̄i denote
respectively the unreliabilities 1 − αi, 1 − βi, 1 − γi.

5.2.2. CLR in ladders
Now we develop an algorithm that returns R{u0,vl},Ll . First, we introduce the

following definitions.

• We denote as u {
i

v the event where there is a path that connects nodes u

and v using only links whose labels have subindices between 1 and i;
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• Ai = (u0 {
i

ui) ∧ ¬(u0 {
i

vi);

• Bi = (u0 {
i

vi) ∧ ¬(u0 {
i

ui);

• Ci = (u0 {
i

ui) ∧ (u0 {
i

vi).

Observe that for each i = 1 . . . l, the three events Ai, Bi and Ci are pairwise
disjoint. For example, the network configuration depicted in Fig. 4 belongs to the
events C1, B2 and C3 but not to the eventsA1, B1,A2, C2,A3 nor B3.

u0 u1 u2 u3

v0 v1 v2 v3

Figure 4: Example of a configuration of the ladder L3

Using this notation we can write R{u0,vl},Ll as

R{u0,vl},Ll = Pr(Al ∧ cl+1) + Pr(Bl) + Pr(Cl) = γl+1 Pr(Al) + Pr(Bl) + Pr(Cl) (2)

Next, for ease of notation, we denote as x and x̄ the events in which a link
labeled x is operating or failing respectively, and as xz the intersection of two such
events x and z. Observe that, for i = 1, . . . , l, it holds that

Ai = Ai−1 ∧
(
aib̄ic̄i ∨ aibic̄i ∨ aib̄ici

)
∨

Bi−1 ∧ aib̄ici∨

Ci−1 ∧
(
aib̄ic̄i ∨ aib̄ici

) (3)

Bi = Ai−1 ∧ āibici∨

Bi−1 ∧ (āibic̄i ∨ aibic̄i ∨ āibici)∨
Ci−1 ∧ (āibic̄i ∨ āibici)

(4)

Ci = Ai−1 ∧ aibici∨

Bi−1 ∧ aibici∨

Ci−1 ∧ (aibic̄i ∨ aibici) .
(5)

The unions and intersections of events involving the links ai, bi and ci were
written in canonical form, to evidence each of the eight possible conjoint states,
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Procedure CLR-Ladder(l, ~α, ~β, ~γ)

1: a← 1; b← 0; c← 0
2: for all i ∈ 1, . . . , l do
3: a′ ← a

(
αiβ̄iγ̄i + αiβiγ̄i + αiβ̄iγi

)
+ bαiβ̄iγi + c

(
αiβ̄iγ̄i + αiβ̄iγi

)
4: b′ ← a

(
ᾱiβiγi

)
+ b

(
ᾱiβiγ̄i + αiβiγ̄i + ᾱiβiγi

)
+ c

(
ᾱiβiγ̄i + ᾱiβiγi

)
5: c′ ← a

(
αiβ̄iγ̄i + αiβiγ̄i + αiβ̄iγi

)
+ b

(
αiβ̄iγi

)
+ c

(
αiβ̄iγ̄i + αiβ̄iγi

)
6: a← a′; b← b′; c← c′

7: end for
8: return b + c + aγl+1

Figure 5: Algorithm for computing the s, t-CLR of a ladder graph

yielded by the individual states of the links, and how they contribute toAi+1,Bi+1
and Ci+1. Moreover, all unions involve disjoint events, and all intersections in-
volve independent events. Therefore, the following identities for the probabilities
Pr(Ai), Pr(Bi) and Pr(Ci) hold:

Pr(Ai) = Pr(Ai−1)
(
αiβ̄iγ̄i + αiβiγ̄i + αiβ̄iγi

)
+

Pr(Bi−1)αiβ̄iγi+

Pr(Ci−1)
(
αiβ̄iγ̄i + αiβ̄iγi

) (6)

Pr(Bi) = Pr(Ai−1)
(
ᾱiβiγi

)
+

Pr(Bi−1)
(
ᾱiβiγ̄i + αiβiγ̄i + ᾱiβiγi

)
+

Pr(Ci−1)
(
ᾱiβiγ̄i + ᾱiβiγi

) (7)

Pr(Ci) = Pr(Ai−1)
(
αiβiγi

)
+

Pr(Bi−1)
(
αiβiγi

)
+

Pr(Ci−1)
(
αiβiγ̄i + αiβiγi

)
.

(8)

Note that the probabilities with subindices i can be computed just employing
probabilities that involve the subindex i−1. The base cases are given by Pr(A0) = 1,
Pr(B0) = 0 and Pr(C0) = 0. So, we can write an algorithm that is linear in l
(shown in Fig. 5), to compute Ru0,vl (Ll). The expression in the return statement
corresponds to Eq. (2).

5.2.3. DCR in ladders
Now we show how the previous method can be extended to find Rd

{u0,vl},Ll
. A

technical lemma will be useful.

Lemma 5.1. Suppose that u0 {
i

ui and u0 {
i

vi. The shortest paths that connect u0 to

ui and u0 to vi (i = 1, . . . , l), using only links whose labels have subindices not above i,
have lengths that differ exactly in one.
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Proof. Let p1 and p2 be examples of the shortest paths that connect u0 to ui and vi,
respectively (using only links with subindex not above i). Both of them will have
the general structure of Fig. 6 where, walking from u0 to ui and vi, they meet a
certain number of times, before they reach ui and vi. Let w be the last common
node. The part p′1 of p1 going from u0 to w has the same length as the part p′2 of p2
going from u0 to w; otherwise, one of p1 or p2 could be made shorter by replacing
p′1 by p′2 or vice versa. Suppose that w = u j with j ∈ {0, i}. Then the parts of p1
and p2 going from w to ui and vi must be as shown in Fig. 6, where clearly the
difference in length is one; otherwise w would not be the last common node. The
same applies in case that w = v j with j ∈ {0, i}.

u0 w ui

vi

Figure 6: Lemma 5.1

In the case of the DCR, for each i = 1, . . . , l, we have to deal with more events
than in the case of the CLR (Ai, Bi and Ci). Now the events are defined by the
pairs of distances from u0 to ui and vi. Let us denote by Em,n

i the event where
dist(u0,ui) = m and dist(u0, vi) = n when considering only the operational links
with subindices not above i. In light of Lemma 5.1 and the specific topology of
the ladder, no event other than E∞,∞i , Em,∞

i , Em+1,m
i , Em,m+1

i , E∞,mi can be feasible,
being i = 0, . . . , l and m = i, . . . , 2i + 1. As we did for the CLR, we can express the
events for i by using only events with subindices i − 1:

E
m,∞
i = Em−1,∞

i−1 aibici ∨ E
m−1,m
i−1 aib̄i ∨ E

∞,m−2
i−1 aib̄ici ∨ E

m−1,m−2
i−1 aib̄i (9)

E
m+1,m
i = E∞,m−1

i−1 aibici ∨ E
m,m−1
i−1 aibi (10)

E
m,m+1
i = Em−1,∞

i−1 aibici ∨ E
m−1,m
i−1 aibi (11)

E
∞,m
i = E∞,m−1

i−1 biaici ∨ E
m,m−1
i−1 āibi ∨ E

m−2,∞
i−1 āibici ∨ E

m−2,m−1
i−1 āibi. (12)

Similar argument on disjointness of unions and independence of intersections
apply to the events involved in these equations. The only base case (i = 0) with
non-zero probability is Pr(E0,∞

0 ) = 1. Now we can build an algorithm (shown
in Fig. 7) to compute Rd

{u0,vl},Ll
. It starts by considering the trivial cases where
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the threshold distance d between u0 and vl is too low to be reachable (the lowest
possible one is l+1). Similarly, if d is above 2l−1, then the operating configurations
are exactly the same as for the CLR, since given the topology of the network, no
configuration exists where the distance between u0 and vl is above 2l − 1. Next,
the algorithm defines a square array, initialized with zeros, large enough to store
the probability of all the events E. For ease of notation, we assume that any
reference involving out-of-range subindices returns zero. The constant t is set
to 2l + 3 to represent the array index for ∞. The probability of the base case
E

0,∞
0 is set to one. Then the algorithm proceeds by sequentially processing the

links, one “ladder step” at a time. For each step, only those values of m that can
accumulate probability are considered; they range from i to 2i. Once the array
is computed, the algorithm builds a vector ~p that stores the probability that the
distance between u0 and vl is an integer m, for every index m ranging from l + 1 to
2l + 1. Finally, the algorithm returns the cumulative probability that the distance
is any value between l + 1 and the parameter d.

The execution time is dominated by the nested iteration, thus the algorithm
has a complexity in time

O(
l∑

i=1

2i∑
m=i

1) = O(
∑
i=1

l(i + 1) = O((l + 1)l/2 + l) = O(l2)

which is quadratic with respect to l. We implemented the algorithm, detailed in
Figure 7, in C++ and tested on an Intel Core2 Duo T5450 CPU machine with 2 GB
RAM. Table 1 shows the values of Rd

{u0,vl},Ll
obtained for 1 ≤ l ≤ 20 and 2 ≤ d ≤ 41,

with identical link reliabilities of p = 3/10. Table 2 shows the values for Rd
{u0,vl},Ll

when 1 ≤ l ≤ 40 and 2 ≤ d ≤ 81, with identical reliabilities of p = 9/10. Figure 9
shows (left) the elapsed time for computing L1 to L150 and (right) the square root
of these times, making clear their quadratic evolution. Finally, four tests were
run for the network L20, and their results are shown in Figure 10. The four charts
show the probabilities that the random variable “distance between u0 and v20”
has the values that range from 21 to 41. (These are the possible finite values it can
have for L20). The difference between 1 and the cumulative probability of each
chart is the probability that both nodes are disconnected. This kind of probability
distribution functions are used by D. Migov to compute the two-terminal DCR of
networks with junction points by means of the convolution operator [7].

5.2.4. Spanish fans
Let us see another example based on a topology that we call “Spanish fan”.

This family of networks Fl is shown is Fig. 8, parameterized by l ∈ Z : l > 1. It
can be seen as a ladder in which one of the sides was collapsed into a single node
(v). Again, we set as terminal two nodes, K = {u0,ul} and so we want to compute
the probability that the nodes u0 and ul are connected by a path with length not
above a certain integer d.

It is easy to see that, in any configuration, when only considering links with
subindices up to i, the following statements hold for all i = 1, . . . , l:
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Procedure DCR-Ladder(l, d, ~α, ~β, ~γ)

1: if d ≤ l then
2: return 0
3: else if d ≥ 2l − 1 then
4: return CLR-Ladder(l, ~α, ~β, ~γ)
5: end if
6: t← 2l + 3
7: e(·, ·)← array (t + 1, t + 1) initialized with 0’s
8: e(0, t)← 1
9: ~x1, ~x2, ~x3, ~x4 ← vectors with subindices 1, . . . , 2l + 1

10: for all i ∈ 1, . . . , l do
11: for all m ∈ i, . . . , 2i + 1 do
12: x1(m)← e(m−1, t)αiβiγi+e(m−1,m)αiβ̄i+e(t,m−2)αiβ̄iγi+e(m−1,m−2)αiβ̄i
13: x2(m)← e(t,m−1)βiαiγi+e(m,m−1)ᾱiβi+e(m−2, t)ᾱiβiγi+e(m−2,m−1)ᾱiβi
14: x3(m)← e(t,m − 1)αiβiγi + e(m,m − 1)αiβi
15: x4(m)← e(m − 1, t)αiβiγi + e(m − 1,m)αiβi
16: end for
17: for all m ∈ i, . . . , 2i do
18: e(m, t)← x1(m)
19: e(t,m)← x2(m)
20: e(m + 1,m)← x3(m)
21: e(m,m + 1)← x4(m)
22: end for
23: e(i − 1, t)← 0; e(t, i − 1)← 0; e(i, i − 1)← 0; e(i − 1, i)← 0
24: end for
25: ~p← vector with subindices l + 1, . . . , 2l + 1
26: for all m ∈ l + 1, . . . , 2l + 1 do
27: p(m)←

(∑
j∈{m−1,m+1,t} e( j,m)

)
28: p(m)← p(m) + (e(m − 1,m − 2) + e(m − 1, t))γl+1
29: end for
30: return

∑
m=l+1,...,d p(m)

Figure 7: Algorithm for computing the s, t-DCR of a ladder graph
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u0

u1

u2

ul−1

ul

v

a1

a2

a3

al

al+1

b1

b2

bl

Figure 8: Spanish fan network

• the distance between u0 and ui can be any value in the range of min(3, i), . . . , i+
1 or infinite;

• the distance between u0 and v can be any value in the range of 1, . . . , i or
infinite.

Now, analogously to Section 5.2.2, we can define Em,n
i as the event where

dist(u0, v) = m and dist(u0,ui) = n when considering only the operational links
with subindices not above i. For a given value of i ∈ 1, . . . , l, the only elementary
events that can occur with probabilities other than zero, and at the end contribute
to Ru0,ul (Fl, d), are:

• E
∞,i
i

• E
m,∞
i : m ∈ 1, . . . , i

• E
m,n
i : n ∈ 1, . . . , i ∧m ∈ 1, . . . ,n

• E
m,i+1
i : m ∈ 1, . . . , i.

Therefore, we can write Ru0,ul (Fl, d) as a sum of probabilities due to event
disjointness,

Ru0,ul (Fl, d) =

d∑
i=1

Pr(E∞,il ) + αl+1

d−1∑
i=1

Pr(Ei,∞
l ) +

d∑
j=1

j∑
i=1

Pr(Ei, j
l ) (13)

where αl+1 is the probability that edge al+1 operates.
As i grows, the number of such feasible elementary events has order O(i2). In

virtue of Lemma 5.1, these events outnumber those of the ladder network. Again,
we can express the events for a given value of i just using events defined for i− 1,
as follows:
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E
∞,i
i = E∞,i−1

i−1 āibi

E
m,∞
i =

(
∪
∞

j=mE
m, j
i−1b̄i

)
∨ E

m,∞
i−1 āibi ∨ E

∞,m−1
i−1 aib̄i (m ∈ 1, . . . , i)

E
m,n
i = Em,n−1

i−1 bi ∨ E
∞,n−1
i−1 (m = n)aibi (n ∈ 1, . . . , i; m ∈ 1, . . . ,n)

E
m,i+1
i = Em,i

i−1bi (m ∈ 1, . . . , i)

Again, the probabilities with subindices i can be computed just employing
probabilities that involve the subindex i − 1. This time the base case is given
by E∞,00 = 1. Similarly as we did for the ladder, we can build an algorithm that
computes the probability of the O(i2) relevant events with subindices i, using the
corresponding probabilities for i − 1. The result is an algorithm with a num-
ber of operations that is O(i3), therefore with time complexity O(i3); once again,
polynomial in i.

150 `

t(s)
558

150 `

t1/2

23.63

Figure 9: Elapsed time, and its square root, for computing L1 to L150 using DCR-Ladder

6. CONCLUDING REMARKS

The reliability evaluation of a particular stochastic binary system has been
discussed, namely the diameter-constrained network reliability (DCR). When the
number of terminals k or the diameter parameter d are free inputs, the DCR isNP-
Hard, since it subsumes the classical network reliability problem. The case where
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l
d 1 2 3 5 8 11 15 20

2 1.72E-01
3 1.72E-01 7.56E-02
4 1.72E-01 7.56E-02 2.99E-02
5 1.72E-01 7.68E-02 2.99E-02
6 1.72E-01 7.68E-02 3.14E-02 3.98E-03
7 1.72E-01 7.68E-02 3.14E-02 3.98E-03
8 1.72E-01 7.68E-02 3.14E-02 4.74E-03
9 1.72E-01 7.68E-02 3.14E-02 4.74E-03 1.60E-04

10 1.72E-01 7.68E-02 3.14E-02 4.75E-03 1.60E-04
11 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.51E-04
12 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.51E-04 5.73E-06
13 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 5.73E-06
14 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.24E-05
15 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.24E-05
16 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.37E-05 6.16E-08
17 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.37E-05 6.16E-08
18 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.37E-05 2.02E-07
19 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.37E-05 2.02E-07
20 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.37E-05 2.65E-07

25 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.37E-05 2.74E-07 1.78E-09

30 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.37E-05 2.74E-07 2.05E-09

41 1.72E-01 7.68E-02 3.14E-02 4.75E-03 2.58E-04 1.37E-05 2.74E-07 2.05E-09

Table 1: Rd
{u0 ,vl},Ll

for 1 ≤ l ≤ 20, 2 ≤ d ≤ 41 and identical reliabilities p = 3/10.

l
d 1 3 6 10 15 20 30 40

2 9.64E-01
3 9.64E-01
4 9.64E-01 9.30E-01
5 9.64E-01 9.30E-01
6 9.64E-01 9.48E-01
7 9.64E-01 9.48E-01 8.36E-01
8 9.64E-01 9.48E-01 8.36E-01
9 9.64E-01 9.48E-01 9.14E-01

10 9.64E-01 9.48E-01 9.14E-01
11 9.64E-01 9.48E-01 9.15E-01 6.86E-01
12 9.64E-01 9.48E-01 9.15E-01 6.86E-01
13 9.64E-01 9.48E-01 9.15E-01 8.66E-01
14 9.64E-01 9.48E-01 9.15E-01 8.66E-01
15 9.64E-01 9.48E-01 9.15E-01 8.73E-01
16 9.64E-01 9.48E-01 9.15E-01 8.73E-01 5.07E-01
17 9.64E-01 9.48E-01 9.15E-01 8.73E-01 5.07E-01
18 9.64E-01 9.48E-01 9.15E-01 8.73E-01 7.93E-01
19 9.64E-01 9.48E-01 9.15E-01 8.73E-01 7.93E-01
20 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.22E-01

22 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 3.60E-01
24 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.05E-01
26 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.71E-01
28 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01
30 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01
32 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01 1.67E-01
34 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01 5.04E-01
36 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01 6.59E-01
40 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01 6.89E-01
50 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01 6.89E-01 6.11E-01
81 9.64E-01 9.48E-01 9.15E-01 8.73E-01 8.23E-01 7.75E-01 6.89E-01 6.12E-01

Table 2: Rd
{u0 ,vl},Ll

for 1 ≤ l ≤ 40, 2 ≤ d ≤ 81 and identical reliabilities p = 9/10.
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Figure 10: Probability distributions for the distance between u0 and v20 in L20

d = 1 and the case where d = 2 and k is fixed belong to the set P of problems
solvable in time polynomial in the number of nodes n. Several subproblems,
given by particular network topologies or constraints in n or k are polynomially
computable. We computed some elementary cases and gave linear algorithms for
two specific topologies. The DCR turns to be NP-Hard when k ≥ 2 is fixed and
d ≥ 3. The complexity of the case where k = n and d ≥ 3 was not determined
in prior literature. In this article, we proved that it belongs to the NP-Hard
complexity class. As a corollary, the result also holds when d ≥ 3 and k is a free
parameter for the complexity analysis.

The computational complexity of the DCR remains unknown when d = 2 and
k = n. It is worth to notice that when all links fail independently with identical
probability p = 1/2, all graphs occur with the same probability. Therefore, the
DCR when d = 2 and k = n is at least as hard as counting all subgraphs with
diameter up to 2 for a given graph of order n.
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