
Yugoslav Journal of Operations Research
26 (2016), Number 1, 3–16
DOI: 10.2298/YJOR140928038M

VARIABLE NEIGHBORHOOD SEARCH FOR
MINIMUM LINEAR ARRANGEMENT PROBLEM

Nenad MLADENOVIĆ
LAMIH, University of Valenciennes, France

Nenad.Mladenovic@univ-valenciennes.fr

Dragan UROŠEVIĆ
Mathematical Institute SANU, Belgrade

draganu@mi.sanu.ac.rs

Dionisio PÉREZ-BRIT
Departamentos de Estadı́stica, Investigación Operativa y Computación,

Universidad de La Laguna, Spain.
Dperez@ull.es

Received: September 2014 / Accepted: December 2014

Abstract: The minimum linear arrangement problem is widely used and studied
in many practical and theoretical applications. It consists of finding an embedding
of the nodes of a graph on the line such that the sum of the resulting edge lengths is
minimized. This problem is one among the classical NP-hard optimization prob-
lems and therefore, there has been extensive research on exact and approximative
algorithms. In this paper we present an implementation of a variable neighbor-
hood search (VNS) for solving minimum linear arrangement problem. We use
Skewed general VNS scheme witch appeared to be successful in solving some
recent optimization problems on graphs. Based on computational experiments,
we argue that our approach is comparable with the state-of-the-art heuristic.

Keywords: Graphs, Optimization, Minimum linear arrangement problem, Variable neigh-
borhood search.

MSC: 90B06, 90C05, 90C08.



4 N. Mladenović, D. Urošević, D. Pérez-Brito / VNS for MinLA Problem

1. INTRODUCTION

Let G = (V,E) be an undirected graph, where V is a set of vertices, and E be a
set of undirected edges. Let labelling be any bijective mapping f of V into itself:
V → {1, ..., n} (n = |V|). For a given labelling f one can calculate cost of mapping
C f as:

C f =
∑

(u,v)∈E
| f (u) − f (v)|

Minimum arrangement problem (MinAP) consists of finding labelling f whose
cost C f is minimal.

Let us denote with S a set of all valid labelling. We suppose that vertices of
a graph are denoted by numbers 1, 2, ..., n, then any solution can be presented as
array (or vector) f with n elements, where f [i] represents the label of vertex i. We
also use inverse operator of f denoted as 1 = f−1. In other words, 1[ j] is the vertex
whose label is j (i.e. f [1[ j]] = j, and 1[ f [ j]] = j).

MinLA is also connected with graph drawing: A bipartite drawing (or 2-layer
drawing) is a graph representation where the nodes of a bipartite graph are placed
in two parallel lines and the edges are drawn with straight lines between them.
The bipartite crossing number of a bipartite graph is the minimal number of
edge crossings over all bipartite drawings. Pach et al. [32] show that for a large
class of bipartite graphs, reducing the bipartite crossing number is equivalent
to reducing the total edge length, that is, to the minimum linear arrangement
problem. Moreover, an approximate solution of MinLA can be used to generate
an approximate solution to the Bipartite crossing number problem [35].

Given its importance, MinLA has been the object of extensive research that
can be divided into two classes: exact and heuristic algorithms. Exact algorithms
guarantee always to discover the optimal label. There exist polynomial time
exact algorithms for some special cases of MinLA such as trees, rooted trees,
hypercubes, meshes, outer-planar graphs, and others (see [10, 33] for a detailed
surveys). However, as is the case with many graph layout problems, finding the
minimum linear arrangement is known to be NP-hard for general graphs [16].
Therefore, there is a need for heuristics to address this problem in a reasonable
time. Heuristic algorithms try to find good solutions as fast as possible, but
they do not guarantee the optimality of the solution found. Many heuristics and
specialized meta-heuristics have thus been proposed and moderate size problem
instances may today be tackled quite efficiently. Table 1 summarizes the most
relevant heuristics to this problem.

The VNS and its variants [24] have proved to be very successful in that respect.
Large problem instances are still difficult to address, however. The aim of our
current development is to expand the VNS methodology for global optimization
by implementing different search strategies to apply its underlying framework to
the Matrix bandwidth minimization problem [31]. In this paper we combine two
variants of VNS, namely General VNS and Skewed VNS to get Skewed general
VNS (SGVNS) based heuristic for solving MinLA. Combining those two VNS



N. Mladenović, D. Urošević, D. Pérez-Brito / VNS for MinLA Problem 5

Reference Contribution
Harper (1964) [18] Optimal assignment method

Juvan and Mohar (1992)[26] Spectral Sequencing method (SSQ)
McAllister (1999) [29] Constructive procedure that labels

vertices in a sequential order
Petit (2003) [33] Successive Augmentation (SAG),

Simulating Annealing (SA)
Petit (2003) [34] A more elaborate Simulating Annealing (SA)

Rodriguez-Tello et al. (2006) [36] Memetic algorithms
Rodriguez-Tello et al. (2007)[37] Two-Stage Simulating Annealing (TSSA)

J.J.Pantrigo et al. (2008) [32] GRASP and Path Relinking

Table 1: Relevant heuristics literature related to the MinLA

variants appeared to be efficient in solving some hard combinatorial problems on
graphs (see e.g. [7, 30]). As will be shown in the computational experiments, the
proposed procedure provides high quality solutions within a short computational
time.

The next section recalls the main VNS methodology and provides a description
how to solve the MinLA based on the VNS framework. Section 3 presents and
analyzes the results of our computational testing over a set of previously reported
instances, and section 4 concludes the paper.

2. VARIABLE NEIGHBORHOOD SEARCH FOR THE MINLA

The basic idea of VNS is to implement a systematic change of neighborhood
within a local search algorithm (see Hansen & Mladenović [19, 20, 21, 22, 23] and
Hansen, Mladenović & Moreno [24]). Exploration of these neighborhoods can be
done in two ways. The first one consists of systematically exploring the small
neighborhoods, i.e. those closest to the current solution, until a better solution is
found. The second consists of partially exploring the large neighborhoods, i.e.,
those far from the current solution, by drawing a solution at random from them
and beginning a (variable neighborhood) local search from there. The algorithm
remains in the same solution until a better solution is found and then it jumps
there. These algorithms rank the neighborhoods to be explored in such a way that
they are increasingly far from the current solution. We may view VNS as a way
of escaping from local optima, where movement to a neighborhood further from
the current solution corresponds to a harder shake. In contrast to random restart,
VNS allows a controlled level of the shake.

2.1. Initial solution
As noted earlier, we save solution in the computer memory by using two

arrays with length n: labelling array f , and its inverse 1 = f−1. The initial solution
(arrays f and 1) is obtained by using some usual greedy add heuristic. Its pseudo-
code is given at Algorithm 1. The set of unlabelled vertices is denoted with U.



6 N. Mladenović, D. Urošević, D. Pérez-Brito / VNS for MinLA Problem

Initially, all vertices are unlabelled. The number of labelled vertices adjacent to u is
denoted as nlab(u). Degree of each vertex u, de1(u), is calculated as the cardinality
of the set N(u) (vertices adjacent to u in graph G). In its first iteration, the vertex
with the minimum degree u gets label 1 ( f (u) = 1, 1(1) = u). It is then removed
from the set of unlabelled vertices U and the remaining graph is updated: the
number of labeled vertices nlab(u) of all its adjacent vertices is increased by 1; the
degree of unlabelled vertices adjacent to u are decresed by 1. New updated graph
is considered in the next iteration. This procedure is iterated until all vertices are
labelled.

Algorithm 1: Greedy add initial solution procedure

Function InitialSolution ( f , 1)
k← 1
U← {1, 2, ..., n}
for u ∈ V do

nlab[u]← 0
de1[u]← |N(u)|

while U , ∅ do
u← arg min{de1[u] − nlab[u] | u ∈ U}
f [u]← k, 1[k]← u
U← U \ {u}
for v ∈ U ∩N(u) do

nlab[v]← nlab[v] + 1
de1[v]← de1[v] − 1

k← k + 1

We have also tested some other methods for getting initial solution which
resulted in inferior performance. One among them is to take initial solution labels
as 1, . . . , n and another by choosing labels at random.

2.2. Sequential variable neighborhood descent (VND)
We design local search that uses four neighborhood structures in a sequential

deterministic way. They are denoted as Nk, k = 1, 2, 3, 4. Those four neighbor-
hoods are ordered and always used in that order. In this subsection we also show
how to modify/update the objective function when the current solution is moved
to a neighboring point.

Neighborhood N1( f ). N1( f ) consists of labelling f ′ obtained from labelling f by
swapping labels of two vertices, but not any two vertices. For a given vertex u we
enumerate all vertices connected to u according to a current labelling. In other
words, let v1, v2, ..., vk represent all vertices connected to u, i.e., let

f (v1) < f (v2) < f (v3) < · · · < f (vk).



N. Mladenović, D. Urošević, D. Pérez-Brito / VNS for MinLA Problem 7

We define median label as:

f mu =

 f (vl+1) if k = 2l + 1⌊ f (vl)+ f (vl+1)
2

⌋
if k = 2l.

Neighborhood N1( f ) consists of labelling obtained by swapping labels of all vertex
pairs u and v (u, v ∈ V,u , v) such that the following condition is satisfied

v ∈ N(u) = {w| f mu − r 6 f (w) 6 f mu + r}.

Here r is a parameter whose value is set to 8 after a brief testing. Note that
the similar moves are used in TSSA, but for randomly selected u and for r = 2.
Detailed steps are given in Algorithm 2.

Algorithm 2: First improvement local search in neighborhood N1

Function LocalSearcN1 ( f , 1, r)
impr← false
for u ∈ V do
SortByValueOfF(N(u), f )
na← |N(u)|
if odd(na) then

f m← f [ na+1
2 ]

else
f m←

⌊ f [na/2]+ f [na/2+1]
2

⌋
for k ∈ [max{0, f m − r},min{n − 1, f m + r}] do

v← 1[k]
∆← ComputeSwap( f , 1,u, v)
if ∆ < 0 then
MakeSwap( f , 1,u, v)
impr← true
break

return impr

Enumeration of vertices in the graph (the outer loop in LocalSearchN1 pro-
cedure) is repeated until an improvement is obtained (impr ← true). Therefore,
our local search applies the first improvement strategy, i.e., the procedure stops
when an improvement in the objective function is found. If there is no u ∈ V that
brings better labelling, logical variable impr keeps f alse value, indicating that the
local minimum is found.

An efficient calculation of change in the objective function value in point
(labelling) that belongs to N1( f ) is given in the procedure ComputeSwap, presented
in Algorithm 3. If the calculated change value, denoted by di f is negative, then
the improvement is reached.



8 N. Mladenović, D. Urošević, D. Pérez-Brito / VNS for MinLA Problem

Algorithm 3: Calculation of the change in the objective function value after
swapping labels of vertices u and v in a given labelling f

Function ComputeSwap ( f , 1,u, v)
di f ← 0
for w ∈ N[u] do

if w , v then
di f ← di f − | f [w] − f [u]|
di f ← di f + | f [w] − f [v]|

for w ∈ N[v] do
if w , u then

di f ← di f − | f [w] − f [v]|
di f ← di f + | f [w] − f [u]|

return di f

Clearly, the complexity of ComputeSwap (.) presented in Algorithm 3 is in
O(dmax), where dmax denotes the maximum degree of the graph. Note that pseudo
code for MakeSwap procedure is omitted since it is obvious.

Neighborhood N2( f ). N2( f ) consists of labelling f ′ obtained by swapping labels
of two vertices u and v whose labels in f are relatively close:

| f (u) − f (v)| 6 r2

Intuitively, if we swap vertices whose labels are far then probability that the new
labelling has smaller cost is relatively small. In our experiments r2 is set to 10.

Algorithm 4: Local search in Neighborhood N2

Function LocalSearcN2 ( f , 1, r)
impr← false
for u ∈ V do

for k ∈ [max{0, f [u] − r},min{n − 1, f [u] + r}] do
v← 1[k]
∆← ComputeSwap( f , 1,u, v)
if ∆ < 0 then
MakeSwap( f , 1,u, v)
impr← true
break

return impr

LocalSearchN2 also use routines ComputeSwap and MakeSwap, explained ear-
lier.



N. Mladenović, D. Urošević, D. Pérez-Brito / VNS for MinLA Problem 9

Neighborhood N3( f ). We also implement neighborhoods N3 (rotate left, or insert
forward) and N4 (rotate right, or insert backward). Let u and v be vertices such
that f (u) < f (v). We can enumerate vertices

w0 = u,w1,w2, ...,wk−1,wk = v

such that f (wi+1) = f (wi)+1. New labelling f ′ can be obtained by decreasing label
of vertices w1,w2, ...,wk by 1, and label vertex w0 = u with f (v). Neighborhood
N3( f ) consists of all labelling obtained by using described method. We restrict the
set of possible moves by introducing a condition

f (v) − f (u) 6 r3

Algorithm 5: Local search in Neighborhood N3

Function LocalSearcN3 ( f , 1, r)
impr← false
for b ∈ [0,n − r] do

for e ∈ [b + 2,min{n − 1, b + r}] do
∆← ComputeRotL( f , 1, b, e)
if ∆ < 0 then
MakeRotL( f , 1, b, e)
impr← true
break

return impr

LocalSearchN3 use two subroutines: ComputeRotL and MakeRotL. It is clear
that the first one updates the difference in objective function value after left rotation
(or forward insertion) move. The details are presented in Algorithm 6.

¿From pseudo-code it is clear that labels of vertices currently labelled with
values between b + 1 and e decrease their values by 1. Also, vertex currently
labelled with b obtains the new label e. Note that values for b and e are known.
They are obtained as inner and outer loop counters coming from the procedure
LocalSearch3().
Neighborhood N4( f ). Neighborhood structure N4 is similar to N3: for a sequence
of vertices

w0 = u,w1,w2, ...,wk−1,wk = v

satisfying conditions f (wi+1) = f (wi) + 1 (i = 0, 1, ..., k − 1), we consider neighbor
whose label f ′ is obtained by increasing labels of vertices w0, ...,wk−1 by one
and setting label of wk to f (w0). We will not give here pseudo-code for the
LocalSearchN4() since it is very similar to LocalSearchN3().

Sequential Variable neighborhood descent (VND). As mentioned earlier, deter-
ministic variant of VNS is called VND. Its sequential version makes a list of



10 N. Mladenović, D. Urošević, D. Pérez-Brito / VNS for MinLA Problem

Algorithm 6: Compute change in the objective function value after left rota-
tion move

Function ComputeRotL ( f , 1, b, e)
di f ← 0
u← 1[b]
for w ∈ N[u] do

if f [w] < b or f [w] > e then
di f ← di f − | f [w] − b|
di f ← di f + | f [w] − e|

for t ∈ [s + 1, e] do
v← 1[t]
for w ∈ N[v] do

if f [w] < b then
di f ← di f − 1

if f [w] > e then
di f ← di f + 1

if w = u then
di f ← di f − ( f [v] − b)
di f ← di f + (e − f [v] + 1)

return di f

different neighborhood structures and use them one after another. The pseudo-
code for Variable neighborhood descent (VND) for solving MinLA problem that
uses 4 neighborhoods is presented in Algorithm 7.

2.3. Shaking
We define a new set of neighborhoods Nk (k = 1, . . . , kmax) to be used in the

perturbation or shaking phase of VNS.Nk may be defined as k repetitions of one
move with respect to one neighborhood structure. We could use for example
one among 4 neighborhoods N j ( j = 1, 2, 3, 4) already described. After a brief
experimentation we decided to use moves obtained from the neighborhood N1:
randomly select vertex u and vertex v ∈ N(u) (see description of N1), and swap
their labels. Repeat this step k times to get random solution that belongs to Nk.
Details are depicted in Algorithm 8.

Indeed, the procedure repeats k times all steps of of LocaSearchN1(), but not
systematically; it is applied only on a randomly chosen neighboring point.

2.4. Skewed GVNS
General VNS (GVNS) is a variant of VNS that includes Variable neighborhood

descent (VND) as a local search within basic VNS. On the other hand, Skewed
VNS (SVNS) extends the sharp move acceptance criterion (Neighborhood change



N. Mladenović, D. Urošević, D. Pérez-Brito / VNS for MinLA Problem 11

Algorithm 7: Sequential Variable neighborhood descent

Function VND ( f , 1)
k← 1
while k 6 4 do

switch k do
case 1 do

impr← LocalSearchN1( f , 1, r1)
case 2 do

impr←LocalSearchN2( f , 1, r2)
case 3 do

impr←LocalSearchN3( f , 1, r3)
case 4 do

impr←LocalSearchN4( f , 1, r4)

if impr then
k← 1

else
k← k + 1

step of the Basic VNS). Within SVNS deteriorating moves are also accepted as
next current solutions, but only if they are relatively far from the incumbent.
For that purposes, one needs to introduce distance function or to supply the
solution space with some metric function. Combining these two VNS variants
we get Skewed general VNS (SGVNS) that has recently showen excellent results
in solving Maximum diversity grouping problem [40, 7] and Clique partitioning
problem [8].

Here we make a move from the solution f to the solution f ′′ (obtained after
shaking and local search) if

C f ′′ < C f (1 + α × d( f , f ′′)).

or equivalently if
C f ′′

C f
< 1 + α × d( f , f ′′).

With d( f , f ′′) we denote the distance between labelling f and f ′′. We use the
following formula for calculating distance d:

d( f , f ′′) =
1
|V|
∑
u∈U
| f (u) − f ′′(u)|

Parameter α is set to 0.005. It can easily be shown that the function d(., .) satisfies
metric axioms. Pseudo–code is given in the Algorithm 9.



12 N. Mladenović, D. Urošević, D. Pérez-Brito / VNS for MinLA Problem

Algorithm 8: Shaking

Procedure Shaking (k, f , 1)
r← 8
while k > 0 do

u← RandomVertex()
SortByValueOfF(N(u), f )
na← |N(u)|
if odd(na) then

f m← f
[

na+1
2

]
else

f m←
⌊ f [na/2]+ f [na/2+1]

2

⌋
ℓ← RandomNumber[max{0, f m − r},min{n − 1, f m + r}]
v← 1(ℓ)
MakeSwap( f , 1,u, v)
k← k − 1

3. COMPUTATIONAL RESULTS

In this section, we compare the results of our Skewed general VNS based
algorithm (SGVNS) with the best existing algorithm from the literature, i.e., with
TSSA [37]. We wanted to make comparison on the same computer and we asked
authors to provide us with either source or executable versions of their code. Since
they could not find any version, we decided to code their relatively easy method
by ourself. Our implementation of TSSA below. is denoted as TSSA1.

Instances proposed by Petit (available onwww.lsi.upc.es/˜jpetit/MinLA/Experiments)
are used. Running time is used as a stopping condition and set to tmax = 2000
seconds for all instances. After detailed testing the value of kmax of our SGVNS is
set to 30. Both methods, i.e., SGVNS and TSSA1, are implemented in C (compiled
with GNU C++) and run on Pentium Core Duo based (2.66Gz) computer under
Linux operating system.

The first column of Table 3 contains the name of the problem. The best known
objective function value is given in the second column (note that this results are
also obtained by TSSA as reported in [37]). Columns 3 to 4 contain results obtained
by SGVNS and our implementation of TSSA. Columns 5 to 7 contain CPU times
until obtaining reported results for corresponding methods. Last two columns
contain percentage deviation of SGVNS and our implementation of TSSA over
solutions reported in [37]. The results reported in Table 3 are best obtained in 20
executions on each instance, but with the different seed values for the random
number generator.

According to computatational results reported in Table 3, the two-stage Sim-
ulating annealing based heuristic (TSSA) reaches the best known values for each
test instance. It appears:



N. Mladenović, D. Urošević, D. Pérez-Brito / VNS for MinLA Problem 13

Algorithm 9: SGVNS

Function SGVNS (kmax, tmax)
InitialSolution( f , 1)
fopt ← f , k← 1, t← 0
while t 6 tmax do

( f ′, 1′)← ( f , 1)
Shake(k, f ′, 1′)
VND( f ′, 1′)
if C( f ′)/C( f ) < 1 + αd( f , f ′) then

if C( f ′) < C( fopt) then
fopt ← f ′

( f , 1)← ( f ′, 1′)
k← 1

else
k← k + 1
if k > kmax then

k← 1

t← ElapsedTime
return fopt

(i) the original and our implementation of TSSA are very different. The average
solution qualities between them is 18.48% in favor to original implemen-
tation. Average running time is also much smaller for TSSA. We have no
explanation for that since we could not see the original code. Our imple-
mentation of TSSA (i.e., TSSA1) may be found at the following web page:
http://mi.sanu.ac.rs/˜nenad/minla.

(ii) SGVNS significantly outperforms TSSA1 in terms of solution quality; com-
pare 3.48% and 18.48% deviations above the best known obtained by SGVNS
and TSSA1 respectively.

(iii) The running times when the best solutions are reached (within 2000 seconds)
of both methods are comparable, although average time spent by SGVNS
is slightly shorter (compare average times of 1346.51 sec and 1392.09 sec
obtained by SGVNS and TSSA1, respectively.

4. CONCLUSIONS

In this paper we present a VNS based heuristic for solving the minimum lin-
ear arrangement problem MinLA. We implement Skewed general VNS (SGVNS)
scheme, the VNS variant that has recently shown very good results. In its descent
or intensification phase, this algorithm explores four neighborhood structures.
Efficient updating of the objective function values at the points from each of those



14 N. Mladenović, D. Urošević, D. Pérez-Brito / VNS for MinLA Problem

Instance Best kn Obj. values Time (in seconds) % dev.
name (TSSA) sgvns tssa1 sgvns tssa1 tssa sgvns tssa1
randomA1 866968 884329 926995 1924.81 1487.72 86.50 2.00 6.92
randomA2 6522206 6650675 6693724 1895.12 1980.60 181.00 1.97 2.63
randomA3 14194583 14369075 14511188 1717.07 1989.76 279.10 1.23 2.23
randomA4 1717176 1760334 1782333 1592.23 1969.45 90.00 2.51 3.79
hc10 523776 523776 523776 0.02 0.01 1.20 0.00 0.00
mesh33x33 31856 32667 39009 1911.94 1983.79 89.90 2.55 22.45
3elt 359151 381738 776438 2000.03 1994.90 1030.80 6.29 116.19
airfoil1 276381 299549 563674 1998.61 1999.85 982.10 8.38 103.95
whitaker3 1143645 1232190 1297786 1999.79 1978.48 3330.10 7.74 13.48
c1y 62230 62987 67071 1177.96 352.86 32.80 1.22 7.78
c2y 78757 79573 81592 1748.44 1899.11 46.70 1.04 3.60
c3y 123145 132053 148669 1904.81 1487.70 93.30 7.23 20.73
c4y 114936 117629 129124 1886.27 1783.73 88.10 2.34 12.34
c5y 96850 100214 110950 1974.62 1843.95 69.20 3.47 14.56
gd95c 506 509 506 0.03 113.61 2.10 0.59 0.00
gd96a 95263 105461 108859 1744.57 1959.36 61.00 10.71 14.27
gd96b 1416 1491 1478 3.75 255.25 2.90 5.30 4.38
gd96c 519 519 519 0.04 81.46 0.30 0.00 0.00
gd96d 2391 2428 2434 103.61 1288.14 6.70 1.55 1.80
Average 1379566 1407221 1461375 1346.51 1392.09 340.73 3.48 18.48

neighborhoods is proposed, including the worst case analysis of such calculations.
Since the source or the executable versions of the current state-of-the-art heuristic
TSSA are not available, we made our own implementation of TSSA, which we
called TSSA1. It appeared that these two algorithms, i.e. TSSA and TSSA1, show
very different characteristics: TSSA was always better despite the fact that TSSA
is relatively easy to code. That is why, in Computational experiments (on Petit
instances available on www.lsi.upc.es/˜jpetit/MinLA/Experiments) we com-
pare our SGVNS with both TSSA and TSSA1. It appeared that all the best known
TSSA results remained best, although it was not clear how they are obtained. On
the other hand, our SGVNS showed much better performances than TSSA1 in
both average solution quality and the running times.

We plan to extend this approach in the future in three directions: (i) we plan to
change parameter r, that is now fixed in advance within all four neighborhoods,
during the execution of the code, generating new neighborhood structures of
the problem; (ii) we implemented sequential VND algorithm as a local search.
However, it is clear that the nested or mixed nested could be used to increase
intensification [25, 38]; (iii) recent extended variants of VNS could be tried out as
well [27, 28, 17, 39]

Acknowledgements: Work of Nenad Mladenovic is conducted at National
Research University Higher School of Economics, Russia and supported by RSF



N. Mladenović, D. Urošević, D. Pérez-Brito / VNS for MinLA Problem 15

grant 14-41-00039. The third author has been partially supported by Gobierno de
Canarias grant SolSubC200801000048.

REFERENCES

[1] Aarts E. H. and Korst J. H., Simulated Annealing and Boltzmann Machines:A Stochastic Approach to
Combinatorial Optimization and Neural computing, John Wiley and Sons, 1989.

[2] Aarts E. H. and Laarhoven P. J. V., “Statistical cooling: A generalapproach to combinatorial
optimization problem”, Philips Journal of Research, 40 (1985) 193–226.

[3] Adolphson D. and Hu T. C., “Optimal linear ordering“, SIAM Journal on Applied Mathematics,
25(3) (1973) 403–423.

[4] Bar-Yehuda R., Even G., Feldman J., and Naor J., “Computing an optimal orientation of a
balanced decomposition tree for linear arrangement problems“, Journal of Graph Algorithms and
Applications, 5(4) (2001) 1–27.

[5] Beasley J., “OR-library: distributing test problems by electronic mail”, Jour-
nal of the Operational Research Society, 41 (1990) 1069-1072. Available at:
http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/files.

[6] Boese K. D. and Kahng A. B., “Best-so-far vs. where-you-are: Implications for optimal finite-time
annealing”, Systems and Control Letters, 22(1) (1994) 71–78.

[7] Brimberg J., Mladenović N., Urošević D., “Solving the maximally diverse grouping problem
by skewed general variable neighborhood search”, Information Sciences, 295 (2015) 650–675,
http://dx.doi.org/10.1016/j.ins.2014.10.043.

[8] Brimberg J., Janićijević S., Mladenović N., Urošević D., “Solving the Clique Partitioning Problem
as a Maximally Diverse Grouping Problem” (submitted for publication).

[9] Charon I. and Hudry O., “The noising method: A new method for combinatorial optimization”,
Operations Research Letters, 14(3) (1993) 133–137.

[10] Diaz J., Petit J., and Serna M., “A survey of graph layout problems”, ACM Computing Surveys,
34(3) (2002) 313–356.

[11] Daskin M., Network and Discrete Location: Models, Algorithms, and Applications, Wiley, 1995.
[12] Domı́nguez-Marı́n P., The Discrete Ordered Median Problem: Models and Solution Methods,

PhD thesis, University of Kaiserslautern, 2003.
[13] Domı́nguez-Marı́n P., Nickel S., Hansen P., and Mladenović N., “Heuristic procedures for solving

the discrete ordered median problem”, Annals of Operations Research, 136 (2005) 145–173.
[14] Drezner Z. and Hamacher H., Facility Location: Applications and Theory, Springer Berlin

Heidelberg New York, 2002.
[15] Falkenauer E., “A hybrid grouping genetic algorithm for bin packing”, Journal of Heuristics, 2

(1996) 5–30.
[16] Garey M. R. and Johnson D.S., Computers and Intractability: A guide to the Theory of NP-Completeness,

W.H. Freeman and Company, New York, 1979.
[17] Hanafi S., Lazic J., Mladenovic N., Wilbaut C., Crevits I., “New VNS based 0-1 MIP Heuristics”,

Yugoslav Journal of Operations Research, DOI: 10.2298/YJOR140219014H.
[18] Harper L. H., “Optimal assignment of numbers to vertices”, SIAM Journal on Applied Mathe

matics, 12(1) (1964) 131–135.
[19] Hansen P. and Mladenović N., “Variable neighborhood search for the p-median”, Location Science,

5(4) (1997) 207–226.
[20] Hansen P. and Mladenović N., Developments of Variable Neighborhood Search, In C.C. Ribeiro

and P. Hansen, editors, Essays and Surveys in Metaheuristics, pages 415–439, Kluwer Academic
Publishers, 2001.

[21] Hansen P. and Mladenović N., “Variable neighborhood search: Principles and applications”,
European Journal of Operational Research, 130(3) (2001) 449–467.

[22] Hansen P. and Mladenović N., Variable Neighborhood Search, In F. Glover and G. Kochenberger,
editors, Handbook of Metaheuristics, International Series in Operations Research & Management
Science, 57, Boston, MA: Kluwer Academic Publishers, 2003.

[23] Hansen P., Mladenovic N. and Pérez-Brito D., “Variable Neighborhood Decomposition Search”,
Journal of Heuristics, 7 (2001) 335–350.



16 N. Mladenović, D. Urošević, D. Pérez-Brito / VNS for MinLA Problem

[24] Hansen P., Mladenovic N. and Moreno Pérez J.A., “Variable neighborhood search: methods and
applications”, Annals of Operations Research, 175 (2010) 367–407.

[25] Ilić A., Urošević D., Brimberg J., Mladenović N., “Variable neighborhood search for solving the
uncapacitated single allocation p-hub median problem”, European Journal of Operational Research
206 (2010) 289–300.

[26] Juvan M. and Mohar B., “Optimal linear labelings and eigenvalues of graphs”, Discrete Applied
Mathematics, 36(2) (1992) 153–168.

[27] Kritzinger S., Doerner K. F., Tricoire F., Hartl R. F., “Adaptive search techniques for prob-
lems in vehicle routing, Part I: A survey”, Yugoslav Journal of Operations Research, DOI:
10.2298/YJOR140219014H.

[28] Kritzinger S., Doerner K. F., Tricoire F., Hartl R. F., “Adaptive search techniques for problems in
vehicle routing, Part II: A numerical comparison”, Yugoslav Journal of Operations Research, DOI:
10.2298/YJOR140217011K.

[29] McAllister A.J., “A new heuristic algorithm for the linear arrangement problem”, Technical Report
TR-99-126a, Faculty of Computer Science, University of New Brunswick.

[30] Mladenović N., Todosijević R. and Urošević D., “An efficient General variable neighborhood
search for large TSP problem with time windows”, Yugoslav Journal of Operations Research, 22
(2012) 141–151.

[31] Mladenović N., Urošević! D., Perez-Brito D. and Garcia-Gonzalez!C. G., “Variable neighborhood
search for bandwidth reduction”, European J of Operational Research 200 (2010) 14-27.

[32] Pantrigo J. J., Duarte A., Campos V. and Martı́ R., “Heuristic for Minimum Linear Arrangement
Problem”, Working Paper

[33] Petit J., “Experiments on the minimum linear arrangement problem”, ACM Journal of Experimental
Algorithmics, 8 (2003).

[34] Petit J., “Combining spectral sequencing and parallel simulated annealing for the MinLA prob-
lem”, Parallel Processing Letters, 13(1) (2003) 77–91.

[35] Reinelt G., Seitz H., “On a binary distance model for the minimum linear arrangement problem”,
TOP, DOI10.1007/s11750-012-0263-7.

[36] Rodriguez-Tello E., Hao J.-K., and Torres-Jimenez J., “Memetic algorithms for the MinLA prob-
lem”, Lecture Notes in Computer Science, 3871 (2006) 73–84.

[37] Rodriguez-Tello E., Hao J., Torres-Jimenez J., “An Effective Two-Stage Simulated Annealing
Algorithm for the Minimum Linear Arrangement Problem”, Computers and Operations Research,
35(10) (2008) 3331–3346.

[38] Todosijević R., Mladenović N., Urošević D., Hanafi S., “A general variable neighborhood search
for solving the uncapacitated r-allocation p-hub median problem” (to appear).

[39] Urošević!D., Brimberg!J., Mladenović N., “Variable neighborhood decomposition search for the
edge weighted k–cardinality tree problem”, Computers & Operations Research, 31(8) (2004) 1205–
1213.

[40] Urošević D., “Variable neighborhood search for Maximum diverse grouping problem”, Yugoslav
Journal of Operations Research, 24 (1) (2014) 21–33.


