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Abstract: This paper discusses a priority based time minimizing transporation problem
in which destinations are prioritized so that the material is supplied, based upon the
priorities of the destinations. All the destinations, which are at priority, are served first in
Stage-I while the demands of the secondary destinations are met in Stage-II. It is assumed
that secondary transportation can not take place until the primary transportation is done.
The purpose is to transport in such a manner that the sum of the transportation time
of primary and secondary destinations is minimum. To achieve this, two approaches are
proposed. In the first approach, primary destinations are served optimally by giving
weights while in the second approach, lexicographic optimization is used. From the
generated pairs, the minimum sum of times corressponding to Stage-I and Stage-II times
is picked up as the optimal solution. It is also shown, through Computational Details,
that the lexicographic optimization converges to the optimal solution faster than the first
approach as reported in Table 4.

Keywords: Time Minimizing Transportation Problem(TMTP), Non Linear Program-

ming(NLP) , Lexicographic Solution.

MSC: 90B85, 90C26.

1. INTRODUCTION

Time minimizing transportation is an important class of transportation prob-
lem. In this, concave function is optimized over a convex polytope and for this
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reason it is included in the class of concave minimization problems[4]. Thus, the
search is restricted to finding only the extreme points. In Literature, various
authors have contributed in this field, where the initial contribution was due to
Hammer([9],[10]). Later on, different authors have studied and proposed vari-
ous methodologies to find the solution of this problem. Some important methods
have been developed by Szwarc ([20],[21]), Garfinkel and Rao[8], Bhatia et al.
[5], Ahuja[1], Prakash [15], Chandra et al. [7], Issermann[11], Arora and Puri[3].
Some methodologies are also developed to find lexicographic solution of bottleneck
problem [6], [2]. In lexicographic optimization, our aim is to minimize the trans-
portation cost not only on the routes of the longest duration but also on the routes
of second longest, and third longest duration, and so on. Sherali [17], Mazzola and
Neebee [13] developed methods for the computation of weights to find lexicographic
optimal solutions. All the available techniques for time minimizing transporta-
tion problem(TMTP) involves cost minimizing transportation problem(CMTP)
for which polynomial time algorithms already exist. Hence, TMTP is solvable in
polynomial time. Sonia and Puri[18] discussed hierarchy in levels of TMTP, while
an iterative procedure to solve this is developed by Anuj Sharma et al. [16].

Mathematically, TMTP can be defined as

min[ max
(i,j)∈IXJ

tij(xij)]

Subject to

n∑
j=1

xij = ai, ∀i ∈ I = {1, 2, 3, . . . ,m}

m∑
i=1

xij = bj , ∀j ∈ J = {1, 2, 3, . . . , n}

xij ≥ 0, ∀(i, j) ∈ IXJ

(P1)

where,
I(Set of sources) = {1, 2, . . . ,m},
J(Set of destinations) = {1, 2, . . . , n},
ai : availability at each source; bj : requirement at each destination,
xij : the quantity transported to destination j from source i,
tij : transportation time involved when the destination j is being supplied by the
source i

tij(xij) =

{
tij , if jth destination is supplied by ith source
0 , otherwise



B.Kaushal and S.Arora / Priority Based Time Minimizing Transportation Problem 221

A priority based assignment problem is studied by Prabhjot Kaur et al.[12], where
an industrial project was discussed, which gives the optimal asssignment in a fi-
nite number of iterations. This is done by selecting m manufacturing units for
the primary jobs, and the secondary jobs are performed(or assigned) optimally
by selecting from the remaining (n−m) units, where m and n are the number of
units and the number of jobs, respectively. Two stage time minimizing assignment
problem is also discussed by Sonia and M.C.Puri[19]. Ilija Nikolić[14] discussed
total time minimizing transportation problem related to active routes, in which
if more than one optimal solutions exist, it is conceivable to incorporate other
criteria as a second level of the criteria. Again, if more than one solutions exist,
then the third objective will be optimized in lexicographic order.

A priority based time minimizing transportaion problem is discussed in this paper,
and to solve it, we used two approaches. The first approach is motivated by a pri-
ority based assignment problem in [12]: primary destinations are served optimally
by giving weights as given by Mazzolla’s [13] technique, and secondary destina-
tions are served without giving any weights. Therefore, the serving of secondary
destinations is dependent upon the serving of primary destinations. On the other
hand, in the second approach, the problem is solved by using lexicographic opti-
mization. Out of the lexicographic pairs so produced, the one with the minimum
sum of time involved to serve primary and secondary destinations is the optimal
solution. It is also shown, through a numerical example, and the computational
results that by the second approach, the optimality is reached in lesser number of
steps than by the first approach as reported in Table 4. The mathematical model
of the problem is given in Section 2. In Section 3, some definitions and results are
given, based on, the methodologies are developed. Section 4 shows the working
procedure of the two approaches. A numerical illustration is shown in Section 5,
and Computational Details for some random problems are shown in Section 6.
Some conclusions are given in the Concluding Remarks.

2. PROBLEM DESCRIPTION

2.1. A Priority Based Time Minimizing Transportation Problem (PBTMTP)

A priority based transportation problem is a variant of the classical transporta-
tion problem. In this problem some destinatons are labelled with priorities i.e., out
of the given destinations, some are to be served at priority in comparison to other.
Such destinations are treated as primary destinations, and the rest are secondary
destinations. From the application view point, such a situation in the real world,
can be encountered in many situations, two of which are listed below:

1. During war time, the soldiers at some destinations require immediate sup-
ply due to deficiency of the material at that destination and hence, such
destinations are treated as primary destinations.

2. Similarly, now a days, various e-retailers have launched priority services so
that the customers receive their goods in one or two days, or sometimes
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within few hours instead of the standard delivery time, depending upon the
requirement of the product (e.g ”Prime service of Amazon”). Such customers
(”Prime members”) are primary customers, and the rest are secondary.

It is assumed that min
i∈I

ai > max
j∈J

bj

Mathematically, PBTMTP can be stated as : (P2)

min{ min
X∈S(X)

(max
IXJ1

tij(xij)) + max
xij∈S(X)

(tij(xij))}

S(X) = {xij ∈ Rm xn |
∑
j∈J1

xij ≤ ai,∀i ∈ I,
∑
i∈I

xij = bj ,

∀j ∈ J1, xij ≥ 0,∀(i, j) ∈ IXJ1}

S(X) = {xij ∈ Rm x (n−m) |
∑
j∈J2

xij ≤ a
′

i,∀i ∈ I,
∑
i∈I

xij = bj ,

∀j ∈ J2, xij ≥ 0,∀(i, j) ∈ IXJ2}

Here,
I (Set of sources) = {1, 2, . . . ,m},
J (Set of destinations) = {1, 2, . . . , n},
ai= availability at any source i,
bj= requirement at any destination j,
tij : transportation time when ith source supply to jth destination,

ai
′ = ai −

∑
i∈I

xij ,∀j ∈ J1,

i.e. updated availability at each source i when all primary destinations are served,
I = Set of sources which are available to supply secondary destinations,
J2 = J − J1 : Set of secondary destinations.

3. THEORETICAL DEVELOPMENT

Some Definitions and Results
For a given PBTMTP, first partition the whole transportation routes IXJ =
{(i, j)}, where i = 1 to m, j = 1 to n into disjoint sets Ml, l = 1, 2, . . . , p, depend-
ing upon the corresponding time entries such that t1 > t2 > t3 > . . . , . . . , > tp.
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Now, corresponding to each defined set Ml, positive weights are attached, say
λp−l+1 for l = 1, 2 . . . , . . . , p, where λl+1 >> λl,∀ l = 1, 2, . . . , . . . , p− 1. One can
refer Mazzolla and Neebee [13], and Sherali [17] for computation of values of λ.

1. Sherali’s Technique

• The values of λp−l+1 are given as
λp−l+1 = Bp−l, l = 1, 2, . . . , p.

B = 1 + Max[UB(
∑ ∑

(i,j)∈Ml

xij , l = 1, 2, . . . , p)], where UB denote

the upper bound.

• The values of λp−l+1 are found as
λ1 = 1

up−l+1 = up−l + λp−l+1

∑
Ml

xij , l = p− 1, p− 2, . . . , . . . , 2, 1.

This gives

up = λp
∑

(i,j)∈M1

xij + λp−1
∑

(i,j)∈M2

xij + . . . · · ·+ λ1
∑

(i,j)∈Mp

xij

2. Mazzola’s Technique

λ1 = 1
λl = (m+ n− 1)λl−1 + 1, l = 2, 3, . . . . . . , p

Here, we have followed Mazzola’s technique [13] for computation of weights. Now,
we find the optimal solution of Stage-I by the following cost minimizing trans-
portation problem(CMTP)

minZ(X) = min
X∈S(X)

∑ ∑
(i,j)∈IXJ

cijxij

cij =

{
0 ∀(i, j) ∈ IXJ2
λp−l+1 ∀(i, j) ∈ (IXJ1) ∩Ml, l = 1, 2... . . . p

}
. . . . . . (CP)

Let T o
1 &T o

2 be the time corresponding to OBFS (Optimal Basic Feasible Solu-
tion) of problem CP. The next pair of solutions can be obtained by the restricted
version of (CP) i.e.(CPk). Let T k−1

1 , T k−1
2 be the corresponding time of Stage I

and Stage II, where T k−1
1 , T k−1

2 ∈ {t1, t2, . . . , tp}, then the next pair of solutions
can be obtained as T k

1 &T k
2 , respectively.
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(CPk) min
x∈S(X)

∑ ∑
(i,j)∈IXJ

cijxij

cij =


M if tij ≥ T k−1

2 , (i, j) ∈ IXJ2
0 if tij < T k−1

2 , (i, j) ∈ IXJ2
λp−l+1, ∀(i, j) ∈ (IXJ1) ∩Ml, l = 1, 2, . . . , p

M-Feasible Solution
The problem (CPk) is said to be M-feasible if there exists a feasible solution which
satisfies the following condition, i.e.
xij = 0 ∀(i, j) ∈ IXJ for which tij = M .

Theorem 1. Let (T k
1 , T

k
2 ) be the time corresponding to primary and secondary

destinations at any kth iteration. Then there does not exist a pair such that
T2 < T k−1

2 and T1 < T k
1 . ( i.e. T k

1 is the minimum time of primary destina-
tions corresponding to secondary destinations time).

Proof. Let there exists a pair (T1, T2) for which the above conditions are satisfied,
i.e. T2 < T k−1

2 and T1 < T k
1 . Let T1 = tu;T k

1 = tv for some u, v ∈ {1, 2, . . . , p}.
Since T1 < T k

1 therefore, tu < tv this implies u > v
⇒ −u < −v
⇒ p− u < p− v
⇒ p− u+ 1 < p− v + 1
Therefore

Z(X) =
∑ ∑

(i,j)∈IXJ

(cijxij) =

p∑
l=1

(λp−l+1)(
∑

(i,j)∈Ml

xij) =

p∑
l=u

(λp−l+1)(
∑

(i,j)∈Ml

xij)

Also Z(Xk) =
∑

(i,j)∈(IXJ)

(cijx
k
ij) =

p∑
l=v

(λp−l+1)(
∑

(i,j)∈Ml

xkij)

Since λi >> λj for i > j, where (i, j) ∈ {1, 2, . . . , p− 1}
p∑

l=u

λp−l+1(
∑

(i,j)∈Ml

xij) <

p∑
l=v

λ(p−l+1)(
∑

(i,j)∈Ml

xkij)

Z(X) < Z(Xk)
Hence, there is a contradiction. Therefore, T k

1 ≤ T1.

Theorem 2. The optimal solution corresponding to Stage-I is found using (CP).

Proof. The proof follows on same lines of Theorem1.

Remark 3. With the formation of (CPk), it is found that
T o
2 > T 1

2 > . . . · · · > T t
2
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T o
1 ≤ T 1

1 ≤ . . . · · · ≤ T t
1 ,

where T t
1 , be the Stage-I time coresponding to the optimal solution of (CPt) & (CPt+1),

is not M-Feasible.
Proof:- Let T k+1

1 < T k
1 , for some k

Zk &Zk+1 be the corresponding objective function value, we find Zk+1 < Zk as
T k+1
1 < T k

1 .
Xk+1 is the optimal solution, which is a contradiction as Xk is the optimal solu-
tion.

Remark 4. If the problem (CPt+1)is not M-feasible, then optimal time of Stage-
II is T t

2 .

Theorem 5. The optimal solution of PBTMTP is given by min
k=1,2...,t

[T k
1 + T k

2 ],

where (T k
1 and T k

2 , k ≥ 0) are the generated pairs corresponding to Stage-I and
Stage-II, respectively.

Proof. Let us consider, ∃ a pair X ′ = (T1, T2) such that T1+T2 < min
k=1,2,...t

[T k
1 +T k

2 ].

We know that T o
2 > T 1

2 > . . . · · · > T t
2 & T o

1 ≤ T 1
1 ≤ . . . · · · ≤ T t

1 . Hence, the
following cases arise

1. Case I: Let T2 > T o
2 . . . (1)

By consruction of (CP), T o
1 be the optimal time therefore, T o

1 ≤ T1 . . . (2)
From (1) and (2) we get
T1 + T2 > T o

1 + T o
2

⇒T1 + T2 > mink=0,1,...,t[T
k
1 + T k

2 ]

2. Case II: Let T2 < T t
2

⇒ that X
′

be the optimal solution of problem (CPt+1), which is not possible
as (CPt+1) is not M-feasible.

3. Case III: Let T2 ∈ (T o
2 , T

t
2)

This implies either T2 = T k
2 for some k = {0, 1, . . . , t}, or T2 ∈ (T k−1

2 , T k
2 )

• If T2 = T k
2 for some k = {0, 1, . . . , t}, then by construction of (CPk),

we get X ′ be the M-feasible solution of (CPk).
As, T1 ≥ T k

1

we get, T1 + T2 ≥ T k
1 + T k

2

⇒ T1 + T2 ≥ min
k=0,1,...,t

[T k
1 + T k

2 ]

• If T2 ∈ (T k−1
2 , T k

2 )
i.e. if T k

2 < T2 < T k−1
2

we get, X
′

is the M-feasible solution of problem (CPk)
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but T1 ≥ T k
1 , as T k

1 is the minimum time of (CPk) corresponding to
Stage-I and T2 > T k

2 .
Thus, we have T1 + T2 > T k

1 + T k
2

⇒T1 + T2 > min
k=0,1,...,t

[T k
1 + T k

2 ]

Hence, there exists no feasible solution X
′

which would yield a minimum value
less than min

k=0,1,...,t
[T k

1 + T k
2 ]. Thus, optimal solution of PBTMTP is given by

min
k=0,1,...,t

[T k
1 + T k

2 ].

4. WORKING STEPS

Here, we give the working steps to find the optimal solution to problem (P2),
using the above mentioned approches.

4.1. First Approach
Initial Step Find the optimal solution of problem (CP) and label the time
corresponding to Stage-I and Stage-II as time T o

1 and T o
2 , respectively.

General Step If (T k−1
1 , T k−1

2 ) are the time corresponding to Stage-I and
Stage-II for k ≥ 1, then solve (CPk) for the next pair of solutions, i.e.
(T k

1 , T
k
2 ).

Terminal Step If OBFS obtained by solving (CPk) is not M-feasible, then
stop, and the optimal value is given by min

k=0,1,...,t−1
[T k

1 + T k
2 ].

4.2. Second Approach

Now, we find lexicographic optimal solution to problem (P2)
Lexicographic Optimal Solution(LOS)
Let F : S → Rq be the q-dimensional function, where S ⊂ Rq and fk be the kth
component of F . Let X ∈ S be the lexicographic feasible solution, in addition
to minimizing the function f1, one is also interested to minimize f2 and if f1 is
as small as possible and if f1and f2 are as small as possible then to minimize f3
and so on. Hence, lexicographic optimal solution (LOS) of any time minimization
transportation (P1) is given by LexminX∈SF (X).
A feasible solution X ∈ S is lexicographically better than X ∈ S for lexicographic
general optimization problem (LGOP) if there exists an index k ∈ {1, 2, . . . , . . . , p−
1}, such that fr(X) = fr(X), r = 1, 2, . . . . . . , k & fr+1(X) < fr+1(X). It is rep-
resented by F (X) < F (X), or we can say, X is LOS of LGOP if there does not
exist X ∈ S for which F (X) < F (X), where (LGOP) is LexminX∈SF (X). The
Lexicographic time minimization transportation problem can be defined as
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(LTMTP ) : LexminX∈SF (X)

Any rth component of F (X) is given by

fr(X) =
∑ ∑

(i,j)∈Mr

cijxij , r = 1, 2, . . . . . . , p. Now, to find the optimal solution we

find Lexmin[f1(X), f2(X), . . . . . . , fp(X)],

i.e. Lexmin[
∑ ∑

(i,j)∈M1

cijxij ,
∑ ∑

(i,j)∈M2

cijxij , . . . , . . . ,
∑ ∑

(i,j)∈Mp

cijxij ]

Theorem 6. The necessary and the sufficient condition for X to be LOS of

(LGOP) is that X is the optimal solution of min
X∈S

p∑
r=1

λrfr(X), where F is a non-

constant p-dimentional vector function, and λ1, λ2, . . . , λp are positive real numbers

such that

p∑
r=1

λrfr(X) has the sign of λtft(X) where t = min
r=1,2,...,p

(r : fr(X) 6= 0).

Proof. One can refer to Theorem 1 of [2], or to Appendix A.

Working Steps

Step 1 Partition the cells (i, j) ∈ IXJ into disjoint sets Ml, l = 1, 2, . . . , p according
to the time entries such that t1 > t2 > t3, . . . , . . . , > tp.

Step 2 Attach weights, say λp−l+1 to each of the above set Ml, l = 1, 2, . . . , . . . , p
such that λl+1 > λl,∀l = 1, 2, . . . , . . . , p−1. These weights can be calculated
using [13].

Step 3 While (true)

Find the optimal solution of

p∑
l=1

λl(
∑∑

Ml

cijxij) using UV method.

Step 4 Find T r = Max(tij)

• If T r is M-feasible
Start If
For this solution T r find [Tr, Tr′ ], i.e. the time corresponding to primary
and secondary destinations, respectively.
End If

• Else
Start Else
T r is non M-feasible.
Break
End Else
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Step 5 Find fr =[Tr + Tr′ ].

Step 6 Set tij = M ∀tij > T r.
End While Loop

Step 7 Stop. For each pair of lexicographic solution, we find
Minfr = Min[Tr + Tr′ ] = T, r = 1, 2, . . . , p
Hence, T = (Tr, Tr′) is the lexicographical optimal solution.

5. NUMERICAL ILLUSTRATION

Consider the following 6X8 priority based time minimization transportation
problem as shown in Table 1. Each cell represents the time of transportation be-
tween every source destination pair. Entries which are marked bold show primary
destinations, and others show secondary destination.
I = {1, 2, 3, 4, 5, 6}=Number of given sources
J = {1, 2, 3, 4, 5, 6, 7, 8}=Number of given destinations
J1 = {1, 3, 4, 6, 8}=Primary destinations
J2 = {2, 5, 7} = Secondary destinations

Now, partition various time entries given as t1(= 13) > t2(= 12) > t3(= 10) >
t4(= 9) > t5(= 8) > t6(= 7) > t7(= 6) > t8(= 5) > t9(= 4) > t10(= 3) > t11(=
2) > t12(= 1). Here, tp = t12, so p = 12
Let Ml = {(i, j) : tij = tl}, l = {1, 2, . . . , p} and λp−l+1 be the weights attached to
the set Ml shown in Table 2,
M1 = {(2, 1), (3, 2), (4, 8), (4, 7), (5, 5)}
M2 = {(2, 4), (2, 5), (5, 6), (5, 8)}
M3 = {(1, 7), (2, 6), (6, 2)}
M4 = {(1, 4), (2, 7), (3, 4), (3, 7), (4, 5), (6, 1)}
M5 = {(3, 1), (3, 6), (6, 4)}
M6 = {(1, 3), (6, 5), (6, 8)}
M7 = {(1, 8), (2, 3), (3, 8), (4, 6), (5, 2), (5, 4), (6, 6)}
M8 = {(1, 1), (1, 5), (5, 7), (6, 5), (6, 8)}
M9 = {(2, 2), (4, 1), (4, 3), (4, 4), (6, 3), (6, 7)}
M10 = {(1, 2), (2, 8), (3, 5)}
M11 = {(3, 3), (5, 1), (5, 3)}
M12 = {(1, 6), (4, 2)}

Then define the corresponding cost minimizing transportation problem(CP)(Ref.
Table 2).

Iteration 1 An OBFS of (CP) gives Stage-I time as T o
1 = 4 and Stage-II

time as T o
2 = 13 with the corresponding solution given as
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Table 1: Entries in each cell shows trasportation time between sources and
destinations, the rightmost entry shows the availability at each source, entries at

the bottom show the demand at each destination.

5 3 7 9 5 1 10 6 9

13 4 6 12 12 10 9 3 8

8 13 2 9 3 8 9 6 8

4 1 4 4 9 6 13 13 10

2 6 2 6 13 12 5 5 9

9 10 4 8 7 6 4 4 8

5 8 6 2 6 3 2 3

Stage-I: x16 = 3, x28 = 3, x33 = 2, x53 = 4, x44 = 2, , x51 = 5, x53 = 4, and
otherwise xij = 0
Stage-II: x45 = 6, x47 = 2, x62 = 8 and otherwise xij = 0
Hence, the first generated pair is (4,13).

Iteration 2 An OBFS of (CP) gives Stage-I time as T o
1 = 4 and Stage-II

time as T o
2 = 10 with the corresponding solution given as

Stage-I: x16 = 3, x28 = 3, x33 = 2, x53 = 4, x44 = 2, , x51 = 5, x53 = 4, and
otherwise, xij = 0
Stage-II: x45 = 6, x37 = 2, x62 = 8, otherwise, xij = 0
Hence, the first generated pair is (4,10).

Iteration 3 An OBFS of (CP) gives Stage-I time as T o
1 = 4 and Stage-II

time as T o
2 = 7 with the corresponding solution given as

Stage-I: x16 = 3, x28 = 3, x33 = 2, x53 = 4, x44 = 2, , x51 = 5, x53 = 4, other-
wise, xij = 0
Stage-II: x42 = 8, x65 = 6, x67 = 2, otherwise, xij = 0
Hence, the first generated pair is (4,7).

Iteration 4 An OBFS of (CP) gives Stage-I time as T o
1 = 4 and Stage-II

time as T o
2 = 3 with the corresponding solution given as
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Table 2: Cost minimizing problem when weights are assigned using Mazzolla [13]

λ5 0 λ7 λ9 0 λ1 0 λ6

λ12 0 λ6 λ11 0 λ10 0 λ3

λ8 0 λ2 λ9 0 λ8 0 λ6

λ4 0 λ4 λ4 0 λ6 0 λ12

λ2 0 λ2 λ6 0 λ11 0 λ11

λ9 0 λ4 λ8 0 λ6 0 λ7

Stage-I: x16 = 3, x28 = 3, x33 = 2, x53 = 4, x44 = 2, , x51 = 5, x53 = 4, other-
wise, xij = 0
Stage-II: x42 = 8, x35 = 6, x67 = 2, otherwise, xij = 0
Hence, the first generated pair is (4,3).

Second Approach
Step 1 Partition various time entries given as
t1(= 13) > t2(= 12) > t3(= 10) > t4(= 9) > t5(= 8) > t6(= 7) > t7(= 6) >
t8(= 5) > t9(= 4) > t10(= 3) > t11(= 2) > t12(= 1). Here, tp = t12, so
p = 12 . Let Ml = {(i, j) : tij = tl} and λp−l+1 be the weights attached to
the set Ml shown in Table 3.
M1 = {(2, 1), (3, 2), (4, 8), (4, 7), (5, 5)}
M2 = {(2, 4), (2, 5), (5, 6), (5, 8)}
M3 = {(1, 7), (2, 6), (6, 2)}
M4 = {(1, 4), (2, 7), (3, 4), (3, 7), (4, 5), (6, 1)}
M5 = {(3, 1), (3, 6), (6, 4)}
M6 = {(1, 3), (6, 5), (6, 8)}
M7 = {(1, 8), (2, 3), (3, 8), (4, 6), (5, 2), (5, 4), (6, 6)}
M8 = {(1, 1), (1, 5), (5, 7), (6, 5), (6, 8)}
M9 = {(2, 2), (4, 1), (4, 3), (4, 4), (6, 3), (6, 7)}
M10 = {(1, 2), (2, 8), (3, 5)}
M11 = {(3, 3), (5, 1), (5, 3)}
M12 = {(1, 6), (4, 2)}

Step 2 Attach weights according to Mazzolla technique[13] as shown in Table 3.
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Table 3: Entries in each cell represents the weights assigned using Mazzolla’s
technique[13] corresponding to the given time entries, Bold entries in brackets

show the allocations after the first iteration.

λ5 λ3(0) λ7 λ9 λ5 λ1(3) λ10 λ6

λ12 λ4 λ6 λ11 λ11 λ10 λ9 λ3(3)

λ8 λ12 λ2(2) λ9 λ3(6) λ8 λ9 λ6

λ4 λ1(8) λ4 λ4(2) λ9 λ6 λ12 λ12

λ2(5) λ6 λ2(4) λ6 λ12 λ11 λ5 λ11

λ9 λ10 λ4 λ8 λ7 λ6 λ4(2) λ7

Step 3 Find the optimal solution to

12∑
l=1

λl(
∑∑

Ml

cijxij) using UV method.

Step 4 Find T 1 = Max(tij) = T 1 = 4 (Ref. Table 3). It is M-feasible solution
and (T1, T1′) = (4, 3).

Step 5 Find f1 = [T1 + T1′ ] = (4 + 3) = 7.

Step 6 For all tij > 4, set tij = M .

Step 3 Find the optimal solution of

12∑
r=1

λr(
∑∑

Mr

cijxij) using UV method.

Step 4 Find Max(tij) = T 1 = M , it is Non M-feasible solution.

Step 7 Stop. The LOS is obtained and is equal to min(f1) = 7.

6. COMPUTATIONAL DETAILS

The algorithm has been coded in MATLAB and successfully verified for ran-
dom generated PBTMTP of different sizes. Implementation is done on Intel
Processor i5 with 2.40 gigahertz, 4 gigabyte RAM on 64 - bit window oper-
ating system. Table 5 shows the computational behaviour of the algorithm
for some classes of a different size.
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Table 4: Average run time (taken over 1000 instances) of PBTMTP for
randomly generated problem of different sizes using MATLAB.

Source(m) Destination(n) Run Time(sec)(Approach-I) Run Time(sec)(Approach-II)

10 10 0.024485 0.008345

10 20 0.120363 0.027441
20 20 0.228380 0.054738

20 30 0.531934 0.117426

30 30 1.044533 0.200807
30 40 1.538710 0.304291

40 40 1.432821 0.442290

40 50 2.637870 0.624100
50 50 3.958245 0.846890

50 60 4.405050 1.449748

60 60 7.660967 1.691123
60 70 8.296886 2.367269

70 70 11.020997 2.980602

70 80 13.840961 3.761623
80 80 15.435807 4.309930

80 90 17.392803 4.908302
90 90 22.181180 6.597987

CONCLUDING REMARKS

(a) An exact method to find the solution of PBTMTP is proposed using
two approaches.

(b) To the best of authors’ knowledge, PBTMTP which is discussed in this
paper has not been studied so far. Though, the first proposed approach
is motivated by [12], we were unable to solve PBTMTP by first serving
secondary destinations, and therefore the approach was modified by first
serving the primary destinations. In the absence of any other approach,
we are unable to provide any comparative study.

(c) It is shown that lexicographic optimization converges to the optimal
solution faster than the first approach, as listed in Table 4, and shown
in the Numerical Illustrations.

(d) The problem may be extended to the case when there are three or more
prior destinations.

(e) The proposed problem has been coded in MATLAB and tested success-
fully for randomly generated problems of different sizes.

Appendix A

Proof of Theorem 6 (Ref. Theorem1 [2])
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Proof. Let X be a LOS of (LGOP), hence there does not exist X ∈ S, for
which k ∈ {1, 2, . . . , p − 1} such that fr(X) = fr(X), r = 1, 2, . . . , k and
fr+1(X) < fr+1(X). It means for no X ∈ S, we have:

p∑
r=1

λr(fr(X)−fr(X) = λk+1(fk+1(X)−fk+1(X))+

p∑
j=k+2

λj(fj(X)− fj(X)

< 0( by the nature of λ′rs)

Therefore, for no such X ∈ S

p∑
r=1

λrfr(X) <

p∑
r=1

λrfr(X)

Thus, X is an optimal solution to min
X∈S

p∑
r=1

λrfr(X).

Converse: Let X be the optimal solution of min
X∈S

p∑
r=1

λrfr(X)

This means

p∑
r=1

λrfr(X) ≤
p∑

r=1

λrfr(X),∀X ∈ S

i.e.

p∑
r=1

λr(fr(X)− fr(X)) ≤ 0,∀X ∈ S

Now, the following two cases arise

(a) Suppose there exist X ∈ S such that∑p
r=1 λr(fr(X)− fr(X)) = 0

Let there be an index k ∈ {1, 2, . . . . . . , p − 1} such that fr(X) =
fr(X), r = 1, 2, . . . , k& fr+1(X) 6= fr+1(X)
This implies that

∑p
r=1 λr(fr(X)− fr(X)) = 0 has the sign of λr+1(fr+1(X)−

fr+1(X)), and

p∑
r=1

λr(fr(X)− fr(X)) 6= 0, which is a contradiction.

Hence, for any X ∈ S for which

p∑
r=1

λr(fr(X)− fr(X)) = 0, we get

fr(X) = fr(X),∀r = 1, 2, . . . , p.
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(b) Let

p∑
r=1

λr(fr(X)− fr(X)) = 0,∀X ∈ S, this means fr(X) = fr(X),∀r =

1, 2, . . . , p. Hence, F becomes a constant p-dimentional real valued func-
tion, which is a contradiction to the assumption.
Hence, there exists an X ∈ S for which either
p∑

r=1

λr(fr(X)− fr(X)) = 0 or

p∑
r=1

λr(fr(X)− fr(X)) < 0

In earlier case, fr(X) = fr(X),∀r = 1, 2, . . . , p.
Consider the latter case whenX ∈ S for which

∑p
k=1 λr(fr(X)− fr(X)) < 0.

Now, as from the construction of λ′rs, it follows that for X ∈ S there
exists an index k ∈ {1, 2, . . . , p − 1} s.t fr(X) = fr(X), r = 1, 2, . . . , k
and fk+1(X) < fk+1(X). Hence, such X ∈ S is not lexicographic bet-
ter than X for LGOP. Thus, in all situations there does not exist an
X ∈ S such that F (X) < F (X). Hence, X is the LOS of LGOP.

Theorem 7. An optimal solution of min

p∑
r=1

λr(
∑ ∑

(i,j)∈Mr

cijxij) is LOS of time

minimization transportation and conversely.

Proof. Proof of this theorem follows from the above theorem.
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