
Yugoslav Journal of Operations Research
29 (2019), Number 1, 113–133
DOI: https://doi.org/10.2298/YJOR170918026S

AN LP BASED APPROXIMATE DYNAMIC
PROGRAMMING MODEL TO ADDRESS

AIRLINE OVERBOOKING UNDER
CANCELLATION, REFUND AND NO-SHOW

Reza SOLEYMANIFAR
Department of Industrial Engineering, University of Illinois at

Urbana-Champaign
Reza@Soleymanifar.com

Received: September 2017 / Accepted: August 2018

Abstract: In this paper we simultaneously address four constraints relevant to airline
revenue management problem: flight cancellation, customer no-shows, overbooking, and
refunding. We develop a linear program closely related to the dynamic program formu-
lation of the problem, which we later use to approximate the optimal decision rule for
rejecting or accepting customers. First, we give a novel proof that the optimal objec-
tive function of this linear program is always an upper bound for the dynamic program.
Secondly, we construct a decision rule based on this linear program and prove that it
is asymptotically optimal under certain circumstances. Finally, using Monte Carlo sim-
ulation, we demonstrate that, numerically, the result of the linear programming policy
presented in this paper has a short distance to the upper bound of the optimal answer,
which makes it a fairly good approximate answer to the intractable dynamic program.
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1. INTRODUCTION

The nature of the airline networks is more compatible with quantity control
methods and therefore, the frequency of papers published in this area is by far
higher than that of pricing methods. Our Linear Program Policy , in compar-

Referred to as LPP from here on



114 Reza Soleymanifar / An LP based Approximate Dynamic Programming

ison to dynamic programming is practically more important and faster due to
its linear computational complexity. Dynamic programming formulations for real
life problems suffer from Curse of Dimensionality, whereas LPP has a far faster
performance at the cost of losing a portion of the answer precision.

We offer a linear-programming-based approximate dynamic programming method
to provide quality solutions to airline network revenue management under the con-
straints, overbooking, cancellation, refund, and no-show. Also we provide a math-
ematical proof that dynamic programming formulation of this problem is bounded
by the aforementioned linear program. Additionally we constructed an approxi-
mate decision rule, based on our linear program and we mathematically prove it
is asymptotically optimal under certain circumstances.

1.1. Literature Review

1.1.1. Pricing Papers

The main efforts made in these papers is to develop a pricing framework to
maximize the generated revenue. These papers do not address the problem of
rejecting or accepting flight requests and are only concerned with the pricing aspect
of the product. Gallego (1997) [13] developed a general framework for multi-
product network dynamic pricing and showed it’s application in network revenue
management. The problem was how to price the final products in a way that
maximizes total revenue generated. He also provides an upper bound for the
revenue generated, based on a deterministic mathematical program.

Kleywegt (2001) [19] provides an optimal control for the dynamic pricing prob-
lem. He also considers the two constraints, cancellation, and refund and assumes
they are independent.

1.1.2. Quantity Control Papers

These papers in general address the problem of whether accepting or reject-
ing the incoming requests. They are classified as either network or single-source
optimization problems.

Single-source Problems
Arslan et al. (2015) [1] in his paper addresses the single-source problem, when

the time is continuous. He uses a discrete-time operator based on dynamic pro-
gramming and analyzes the value function and its properties. Beckman (1958) [2]
calculates the optimum sale levels when distribution function of cancellation and
no-shows are given. He uses the gamma function to approximate the cancellation
and no-show processes. Chatwin (1998) [6] addresses a single-source and static
problem in which request for low fare flights arrive sooner than the high fare re-
quests. He also takes into account cancellation and no-shows and tries to calculate
the booking levels for this kind of flight.

Coughlan (1999) [8] introduces an overbooking model for the Irish airline com-
pany Aier Lingus. He examines his model using the real life data of this company
and reveals that revenue can increase between %1 to %2. Karaesmen (2004) [18]
addresses overbooking where different classes of airline are substitutable. He solves
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a two stage optimization problem. In the first stage flight requests are either re-
jected or accepted with regard to their cancellation probabilities. In the second
stage customers cancel their flights and the remainder of which are allocated to
different classes of airline. The allocation is optimized to maximize the revenue.
Eventually he reveals that the substitutability of different classes of airline has a
great impact in reduction of losses and increase of revenue.

Thompson (1961) [26] addresses the status of different airlines regarding the
overbooking problem and explains the challenges they should face. He also dis-
covers deficiencies of these systems and provides solutions for improvement.

Gosavi (2002) [17] provides a machine learning approach to address a single
leg airline revenue management problem. He takes into consideration both cancel-
lation and no-shows and solves the problem with regard to them. He states that
solving this problem using dynamic programming requires a state variable with a
large state space, while his method has no such constraint.

Network Problems
Network models perform capacity allocation throughout the whole network,

contrary to previous models which do this for a small portion of the whole network.
Single-source problems take into account only one leg of a network while network
models address multiple related legs simultaneously. The collection of related
legs in a network is technically referred to as a hub and spoke network. We will
address this concept, in section 2. Majority of papers cited here reflect the fact that
network revenue management increase revenue far greater than using single-source
models multiple times. [23]

Mathematical Programming Models

Bertsimas (2003) [3] solves a mathematical program which is the simplified form
of a dynamic program. He shows that his mathematical-programming-based algo-
rithm has better performance than conventional bid-pricing methods which rely
on Lagrange coefficients. Farias (2003) [12] states that the curse of dimensionality
makes the dynamic programming of network revenue management intractable and
provides a stochastic linear program to solve this problem.

Talluri (1998) [24] uses bid-pricing to solve network revenue management prob-
lem and shows that this approach is not generally optimal. He shows that if the
leg capacities and flight demands grow at the same rate then the bid-pricing policy
becomes asymptotically optimal. Weatherford (2012) [27] encourages researchers
to use a mixed linear and dynamic program approach and shows that using these
two methods simultaneously yield better results than using them separately. He
implemented his method in networks with over 100 legs and provided very good
results. He also shows that the running time of his optimization models shows
great improvements over the previous models.

Decomposition Models

Goensch (2013) [14] addresses network revenue management problem for a
special category of products called opaque products. These products reveal the
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airline, and departure time of the flight only after customer purchases the prod-
uct. Naturally these products have lower prices than the non-opaque ones. He
shows that solving this problem for large networks becomes intractable and uses
decomposition to overcome this issue. He also states that opacity should be used
moderately and excess in use of this technique can result in revenue loss. Goen-
sch (2014) [15] incorporates upgrades in the formulation of his network revenue
management problem and shows that conventional decomposition methods are
incapable of solving this problem as the state space of this problem grows ex-
ponentially. He offers a new decomposition method that can be applied to this
problem. He also mentioned that this is certainly not the only decomposition
method that can be applied to this problem, and other decomposition methods
are likely to yield different results. He encourages researchers to explore other
decomposition methods that can be applied to his model.

Farias (2007) [11] studies an airline network in which customer arrivals follow a
Markovian Stochastic Process. He approximates his dynamic programming value
function with a concave function that can be decomposed into legs of the network.
He shows that his model can increase revenue by up to 8% in comparison to linear
programming models.

Birbil (2013) [4] decomposes the network airline revenue management problem
into origins and destinations. He offers a holistic decomposition framework for
airline revenue management problems and states that it can also be used for single-
source problems. He also solves multiple networks and multi-source problems,
using his framework and shows its good performance in comparison to previous
models. His model is capable of incorporating robust optimization and customer
behavior.

Erdelyi (2010) [9] addresses capacity allocation and overbooking simultane-
ously in an airline network. He first decomposes the problem into flight legs and
shows that even for single-source problems it is still intractable. He reduces the
state space into a scalar variable to overcome this issue. In the results section
he reveals that his decomposition method performs better than most previous
models. Kunnumkal (2008) [20] shows that if the dumping penalty function is a
separable function then the optimality equation for capacity allocation with over-
booking can be decomposed into flight legs. He compares his approach with a
linear-programming based and a recent dynamic programming model and shows
that the improvement is noticeable. He also observed improvements in duration
of the solving time of the problem.

Zhang (2011) approximates the value function of an airline revenue manage-
ment problem, with a non-linear non-separable function, and incorporates cus-
tomer behavior, in his model. The result of his work is a non-linear problem
with non-linear constraints. He shows, in his model that heuristic control policies
provided can perform better than previous models.

Simulation-based Models

Simulation-based models make attempts at approximating the value function
using a variety of methods.
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Gosavi (2006) [16] used a simulation-based optimization for airline network
capacity allocation. He takes into account realistic constraints like cancellation.
His method is capable of solving both single-source and multi-leg networks. The
main feature of his work is that his approach does not require a mathematical
model and only needs a discrete-event simulation and a numerical optimization
method like gradient ascent or a meta-heuristic model. He proposes focusing on
the optimization time of the problem as one of the windows of opportunity for
further research.

2. PROBLEM STATEMENT

The problem we are going to address in this paper is relevant to an airline
network. This network includes some origins and destinations and one or more
hubs. This configuration is referred to as hub and spoke network in the literature,
and has fundamental differences from the traditional point to point network as
shown in figure 1.

A leg is defined as any path from two adjacent nodes in the graph (e.g. B to
Hub, or Hub to H). An itinerary is defined as a path between two nodes (wether
adjacent or non-adjacent). Our resources in this problem is the number of seats
available at each flight leg at the begging of the simulation. During the time
horizon of our optimization, flight request arrive and our decision is either to
reject or accept these requests. For each request that we accept we give up some
resources at some flight legs and receive revenues proportional to the fare price
of the itinerary we sold. Customers may or may not cancel their flights during
the time horizon of the problem. At the end of the time horizon, not all of the
customers show up to board their planes. This gives us the incentive to overbook
our resources at each leg. We refund both cancellation and no-show occurrences.

Figure 1: Point to Point versus Hub, and Spoke Airline Network

Our objective is to decide on rejecting or accepting customer requests in a way
that at the end of the the time horizon we have maximized our revenue. This
includes following considerations:

• We should decide wether it’s better to wait for the customers with higher
fare prices or avoid the risk of empty seats at the end of the time horizon
and sell our resources right away.
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• We should determine how many customers are not going to show up at the
time of the flight, how many are going to cancel their flights and accordingly
overbook our resources.

• After airline network is filled to capacity and high fare itineraries arrive we
should consider dumping low fare customers and accepting recently received
high fare flight requests.

• At the departure time when some seats are overbooked we should decide upon
which customers to dump so we incur the least penalty while considering the
capacity constraints of the airline network.

3. Problem Formulation

3.1. Parameters, and Variables

• {τ, . . . , 1} is the time horizon of the problem. τ represents the time we start
to sell the flights and 1 represents the last time interval in which we sell our
flights. Furthermore, 0 shows the time at which planes departure. Time
intervals are small enough to allow at most one occurrence of cancellation or
itinerary request happen (characteristic of Poisson distribution).

• L is the set that includes all the legs in the airline network.

L = {1, . . . ,m}

• J is the set that includes all the itineraries ready to be sold in the airline
network.

J = {1, . . . , n}

• ci is the capacity of the ith leg.

• pjt is the chance that jth itinerary receives a flight request at the time t

• q′jt is the probability of cancellation occurrence at the time interval t for
itinerary j. This probability is independent from cancellation at other time
intervals, and other itineraries, and is also independent from flight requests
for other itineraries.

• fj is the revenue generated from selling the jth itinerary.

• rj is the sum refunded to the person who has booked the jth itinerary, has
not cancelled his flight during the time horizon of problem and has not shown
up at departure time.
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• r′j is the sum refunded to the person who has booked the jth itinerary and
cancels his flight before the departure time. Essentially ∀j rj ≤ r′j always
holds since typically refund sums paid to cancellations are more than those
of no-shows.

• qj is the probability that the customer who has purchased the jth itinerary
shows up at the departure time (provided he does not cancel his flight, during
the time horizon of the problem)

• q′j is the probability that a customer who has booked the jth itinerary cancels
his flight before the end of time horizon. This probability is independent from
his place in the queue of the individuals who have booked the jth itinerary
and is also independent from the time interval at which he has purchased
his ticket.

• aij if we accept the flight request for itinerary j, we will consume aij of our
resources in leg i.

• γj is the penalty we incur if we dump a customer who has booked the
itinerary j.

• xjt is the total number of reservations for itinerary j at the start of the time
interval t. xt is the vector, that shows the status of reservations for the whole
network and its elements are xjt.

xt = (x1t, . . . , xnt)

• xj0 is the total number of reservations for itinerary j right before departure
time.

• zj is the total number of people we are going to accept during the time
horizon of problem (relevant to deterministic model).

• yj is the total number of people we are going to dump at the end of the time
horizon (relevant to deterministic model).

• Z∗j is the random variable representing the total number of passengers we
accept under the dynamic programming optimal policy.

• Y ∗j is the random variable representing the total number of passenger we
dump at the end of time horizon under the dynamic programming optimal
policy.

• S∗j is the random variable representing the total number of passengers that
board the planes under the dynamic programming optimal policy.
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• sj(k) is a Bernoulli variable with parameter qj which at the event that the
kth customer of itinerary j, who has not cancelled his flight during the time
horizon of the problem, shows up at the departure time takes value 1 and
otherwise its value is 0. This is equivalent to the event that the customer
who has booked the flight j and has not cancelled this flight during the time
horizon of the problem, shows up at the departure time.

sj(k) ∼ B
(
1, qj

)
• s′j(k) is a Bernoulli variable with parameter qj(1 − q′j) which at the event

that the kth customer of itinerary j shows up at the departure time takes
value 1 and otherwise its value is 0. This is equivalent to the event that the
customer who has booked the flight j does not cancel his flight and shows
up at the flight time.

sj(k) ∼ B
(
1, qj(1− q′j)

)
• sj0(xj0) is the total number of reservations that are present at the time of

departure. Given that decisions of the customers to show up at the time of
departure are independent from each other, sj0(xj0) has a binomial distri-
bution with parameters, xj0, and qj .

∀j sj(k) ∼ B(1, qj), ∀i, j Cov
(
sj(k), si(k)

)
= 0

⇒
xj0∑
k=0

sj(k) = sj0(xj0) ∼ B(xj0, qj)

• s0(x0) is the vector that shows the number of reservations, that are present
at the time of departure.

s0(x0) =
(
s10(x10), . . . , sn0(xn0)

)
• djt is the Bernoulli random variable with parameters pjt which takes value

1 if request for itinerary j arrives at time interval t and otherwise its value
is 0.

djt ∼ B(1, pjt)
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• d′jt is the Bernoulli random variable with parameters q′jt which takes value
1 if request for itinerary j is cancelled at time interval t and otherwise its
value is 0.

d′jt ∼ B(1, q′jt)

• Dj is the random variable that shows the total number of requests arrived
for itinerary j during the time horizon of the problem.

Dj =

τ∑
t=1

djt

• D′j is the random variable representative of the total number of cancelled
reservations for itinerary j during the time horizon of the problem.

D′j =

τ∑
t=1

d′jt

3.2. The Dynamic Programming Model

We define a dynamic program with the following specifics:

1. Step: Each time interval in the set {τ, . . . , 1} is a step for our dynamic
program.

2. State: Our state variable at this mathematical model is xt = (x1t, x2t, . . . , xnt).
Our state variable is a vector with n dimensions. This problem as it seems,
suffers form Curse of Dimensionality.

3. Boundary Condition: We define the value function at the last interval as
follows:

u0(x0) = −E{V (s0(x0))}
in which the operator E represents the expected value of a random variable.
We define V (s0(x0)) as follows:

V (s0(x0)) = min

n∑
j=1

γjyj +
(
xj0 − sj(xj0)

)
rj (1)

s.t.

n∑
j=1

aij [sj0(xj0)− yj ] ≤ ci i = 1, . . . ,m (2)

yj ≤ sj0(xj0) j = 1, . . . , n (3)

yj ∈ Z+ j = 1, . . . , n (4)
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The objective function in problem 1 to 4 is equal to the dumping penalty
incurred plus the refund sums.
Problem 1 through 4 is an integer program. The decision variable yj is
the number of people we are going to dump from itinerary j. Constraint
2 ensures the total number of people boarding the planes does not exceed
airline network capacity. Constraint 3 ensures the total number of dumped
people do not exceed the total number of people present at the departure
time.

4. value function:

ut(xt) =

n∑
j=1

[
pjt︸︷︷︸

P (A):Arrival

max
{
fj + ut−1(xt + ej), ut−1(xt)

}]
(5)

+

n∑
j=1

[
q′jt︸︷︷︸

P (B):Cancellation

[
− r′j + ut−1

(
g(xt − ej)

)]]
(6)

+
[

1−
n∑
j=1

(
pjt + q′jt

)
︸ ︷︷ ︸
1−P (A∪B):Neither

]
ut−1(xt) (7)

g(x) : Rn×1 → Rn×1 is the vector that its elements are Heaviside Functions:

gT (x) =
[
g1(x1) = H(x1), g2(x2) = H(x2), . . . , gn(xn) = H(xn)

]
5. Optimal Policy: Upon receiving a customer request we accept a request, if

following holds, and reject the request otherwise.

fj + ut−1(xt−1 + ej) ≥ ut−1(xt−1) (8)

We can consider the ut−1(xt−1) − ut−1(xt−1 + ej) as the bidding price for
itinerary j below which we do not accept any requests.

3.3. The Linear Program

The value functions in the dynamic program presented is intractable to com-
pute and so is the bidding price. The original idea behind the linear program we
are going to present is that if all stochastic variables acquire their expected values
then we can develop a linear model to address this counterpart deterministic prob-
lem. Later we show the relationship between this linear program and the dynamic
program.The linear program is as follows:
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max

n∑
j=1

fjzj −
n∑
j=1

γjyj −
n∑
j=1

[
(1− qj)(1− q′j)rjzj

]
−

n∑
j=1

q′jr
′
jzj (9)

s.t

n∑
j=1

aij
[
qj(1− q′j)zj − yj

]
≤ ci i = 1, . . . ,m (10)

zj ≤
τ∑
t=1

pjt j = 1, . . . , n (11)

yj − qj(1− q′j)zj ≤ 0 j = 1, . . . , n (12)

zj , yj ≥ 0 (13)

The objective function in problems 9 through 13 represents the revenue gained
through accepting arriving itinerary requests minus following items:

1. The total penalty we incurred because of the passengers we dumped

2. Refund to no-shows

3. Refund to cancellations

Constraint 10 ensures that the expected number of people present at the time
of departure minus the number of people we are going to dump, does not exceed
the capacities of our flight legs. Constraint 11 ensures that the total number
of people we accept, does not exceed the expected number of people who send
requests to our airline network. Constraint 12 ensures that the total number of
people we reject does not exceed the expected number of people that are present
at the departure time.

Linear Programming Policy

Here we provide a policy to make decisions about the dynamic program pre-
sented at 5 through 7. The dynamic program policy is essentially an optimal pol-
icy but suffers from Curse of Dimensionality and thus is intractable. The Linear
Programming Policy (LPP) we provide here has linear computational complexity
which makes it a good choice for practical purposes. At the same time we show
that under certain circumstances the value function under this policy asymptoti-
cally converges toward the optimal value function.

We use the linear program presented at 9 to 13 to decide upon accepting
or rejecting flight requests. µ∗ = (µ∗1, . . . , µ

∗
m) is the optimal values of Lagrange

Coefficients relevant to constraint 10 in problem 9 to 13. We use the µ∗i to calculate
the opportunity cost of consuming one unit of ith leg capacity.

If the revenue generated from accepting a request exceeds the sum of oppor-
tunity costs for the resources it uses across our airline network, we accept the
request. Likewise if the revenue generated is greater than the expected penalty
we will be paying at the event of dumping that passenger, again we accept the
request. In other cases we simply reject the request.
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We present the LPP in the form of following decision rule:

fj ≥ min

{
qj(1− q′j)

m∑
i=1

aijµ
∗
i , qj(1− q′j)γj

}
(14)

The decision rule 14 comprises of two different parts. Firstly, if the opportunity
cost of resources consumed is lower than the fair for itinerary requested we accept
the request. Secondly, if the expected value of the penalty paid is lower than
revenue generated by selling the itinerary we again accept the request. In fact, if
fj ≥ qj(1−q′j)γj holds, we can expect to generate revenue equal to fj−qj(1−q′j)γj .

In order to use this policy we decide about the requests based on the rule 14.
If the inequality 14 holds we accept the request and we update the right hand
side of the problem 9 to 13 proportional to the resources consumed; otherwise we
reject the request and without revising the right hand side values wait for the next
request to arrive. In case of cancellation, again, we update the right hand side
of the linear program. We expect the right hand side of a leg in network have
higher shadow prices at the event that many itineraries use this leg or it is part of
high-fare itineraries. It is logical that the customer should pay higher fares if he
uses this leg in his itinerary.

3.4. Theoretic Findings

At this juncture, we provide theoretic findings that describe the relation be-
tween dynamic program in 5 to 7, and the linear program in 9 to 13.

We categorize results provided, in this section in two lemmata and one theorem.
Lemma 1 explains that the optimal value of objective function in linear program
9 to 13 serves as an upper bound for the optimal value of value function 5 to 7.
lemma 5 explains that value function of the optimal policy converges toward the
optimal objective function of the linear program as time horizon of the problem
grows.

Theorem 6 explains that the LPP policy provided here if the time horizon of
the problem is large enough, is asymptotically optimal.

Lemma 1. The optimal value of objective function of linear program is an upper
bound for the value function of the dynamic program. In other words:

ZLP ≥ uτ (0̄)

Proof. We define:

• ZLP is the optimal objective function of the linear program.

• uτ (0̄) is the optimal value function of the dynamic program

Following equations always hold:
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• Total number of boarded passengers minus the total number of dumped
passengers should not exceed our resources.

n∑
j=1

aij(S
∗
j − Y ∗j ) ≤ ci i = 1, 2, . . . ,m (15)

• Total number of people accepted should be less than the total number of
requests arrived.

Z∗j ≤ Dj (16)

• Total number of dumped passengers should not exceed total number of
boarded passengers.

Y ∗j ≤ S∗j (17)

For uτ (0̄) we have :

uτ (xt = 0̄) =

n∑
j=1

fjE(Z∗j )−
n∑
j=1

γjE(Y ∗j )−

n∑
j=1

(1− qj)(1− q′j)rjE(Z∗j )−
n∑
j=1

q′jr
′
jE(Z∗j ) (18)

If Z∗∗j , and Y ∗∗j are the optimal answers of the linear program we have

ZLP =

n∑
j=1

fj(Z
∗∗
j )−

n∑
j=1

γj(Y
∗∗
j )−

n∑
j=1

(1− qj)(1− q′j)rj(Z∗∗j )−
n∑
j=1

q′jr
′
j(Z
∗∗
j ) (19)

Additionally:

E(S∗j ) = E
[
E
( Z∗

j∑
k=1

s′j(k) | Z∗j
)]

= E
[
E
(
s′j(k)

)
Z∗j
]

= E
[
qj(1− q′j)Z∗j

]
= qj(1− q′j)E(Z∗j ) =⇒ E(S∗j ) = qj(1− q′j)E(Z∗j ) (20)

Also:
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Dj =

τ∑
t=1

djt ⇒ E{Dj} =

τ∑
t=1

E{djt} =

τ∑
t=1

pjt =⇒ E{Dj} =

τ∑
t=1

pjt (21)

Now calculating the expected values of 15, 16, and 17 and substituting values from
20, and 21, equations 22 through 24 result.

n∑
j=1

aij
[
qj(1− q′j)E(Z∗j )− E(Y ∗j )

]
≤ ci i = 1, . . . ,m (22)

E(Z∗j ) ≤
τ∑
t=1

pjt j = 1, . . . , n (23)

E(Y ∗j )− qj(1− q′j)E(Z∗j ) ≤ 0 j = 1, . . . , n (24)

Equations 22 through 24 show that vectors E(Z∗) =
[
E(Z∗1 ),E(Z∗2 ), . . . ,E(Z∗n)

]
,

and
E(Y ∗) =

[
E(Y ∗1 ),E(Y ∗2 ), . . . ,E(Y ∗n )

]
are feasible answers for the linear program

9 through 13. In addition we can infer from equality of 18, and 19 and the fact
that the objective function of a feasible solution is less than that of the optimal
solution:

ZLP ≥ ZE(Z∗) = uτ (0̄)

and proof is complete.

Before explaining lemma 5 we provide two definitions.

Definition 2 (Policy). A policy is a rule for decision making and thus a policy
can be dependent upon the history of a process from beginning to current time when
we wish to make a decision. It can be also completely stochastic

Example 3 (Dynamic Programming Optimal Policy). The optimal policy
in dynamic program 5 to 7 is defined as the function f : Rn×1 −→ {0, 1} where
Rn×1 is the state space of the vector xt, and the set {0, 1} is representative of the
decision space. 1 stands for accepting a flight request, and 0 stands for rejecting a
flight request. We may show the optimal policy as follows:

f(xt) =

{
1 if fj ≥ ut−1(xt−1)− ut−1(xt−1 + ej)

0 Otherwise
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Definition 4 (Optimal Policy). Policy π∗ is an optimal policy only if:

uπ∗(xt) = sup
π
uπ(xt)

where π represents all possible policies.

Lemma 5. If the time horizon of the problem is large enough and quantity of re-
quests arrived are large enough then the optimal value function of dynamic program
converges toward optimal objective function of linear program, or:

if τ −→∞, ∀ ε > 0 |ZLP − uτ (0̄)| < ε

Proof. To prove this lemma we first define First Come First Served policy . FCFS
policy is such that until the total number of requests accepted for itinerary j has
not reached E(Z∗∗) we accept all flight requests. Since τ −→ ∞ and we have no
limitation on the requests arrived we can reach the maximum capacity of each leg
after a long time regardless of the arrival probabilities of the itineraries. At the
end of time horizon we will not allow E(Y ∗∗j ) customers to board planes. We then
have:

uFCFSτ (0̄) = ZLP (25)

In addition according to lemma 1 we have:

uFCFSτ (0̄) ≤ uτ (0̄) ≤ ZLP (26)

and thus:

if τ −→∞, uFCFSτ −→ ZLP (27)

then according to 26 and squeeze theorem we will have:

uτ (0̄) −→ ZLP (28)

and proof is complete.

Theorem 6. LPP is asymptotically optimal if the time horizon of the problem is
large enough.

We refer to this as FCFS from here on
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Proof. LPP is as follows:

f(xt) =

{
1 if fj ≥ min

{
qj(1− q′j)

∑m
i=1 aijµ

∗
i , qj(1− q′j)γj

}
0 Otherwise

(29)

Value 1 represents accepting a request and 0 represents rejecting it. µ∗i is the
shadow prices relevant to the constraints of the following linear program 9 through
13.

We update the right hand side of this linear program upon consumption or
release (flight cancellation) of resources. Since LPP uses the information received
during the time horizon of the problem it will perform better than FCFS which
does not use this information. Thus:

uFCFSτ (0̄) ≤ uLPPτ (0̄) ≤ uτ (0̄) ≤ ZLP (30)

Now using lemma 5, and:

τ −→∞ : uFCFSτ −→ ZLP

Using squeeze theorem and 30:

τ −→∞ : uLPPτ −→ ZLP = sup
π
uπ(xt) =⇒ uLPPτ (0̄) = sup

π
uπ(xt) (31)

Thus proof is complete

4. NUMERIC FINDINGS

Figure 2 shows the sample airline network we use to test the performance of
LPP. It comprises of one hub, one origin, and one destination. It consequently has
two legs namely Origin-Hub and Hub-Destination and three itineraries Origin-
Hub (itinerary 1), Hub-Origin (itinerary 2) and Origin-Destination (itinerary 3).
All parameters relevant to no-shows, refunds, cancellations, arrival probabilities,
itinerary fares, and dumping penalties are given in figure bellow.

We benchmark LPP performance against the First Come First Served (FCFS)
policy. The results are shown in following tables. We used Monte Carlo simulation
to evaluate the average performance of each algorithm. A total of 2500 samples
of simulating network 4 is aggregated to create table 1 and 3. The columns show
their relevant average under different cancellation rates starting from %1 to %30.

The results relevant to LPP is shown in table 3 and 4. LPP consistently offers
close-to-upper-bound results except for the very high cancellation rates. The upper
bound gap has a one figure value which is acceptable. The upper bound gap when
the cancellation rate is exceptionally high is %11.5 which is still considerably better
than the FCFS results.
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Table 1: Average of FCFS policy performance (Monte Carlo simulation results)

Cancellation Probability (%) 1 5 10 20 30

Upper Bound Gap(%) 33.92 32.14 27.43 18.31 14.59
Upper Bound ($) 31514.33 31231.22 30901.25 30340.00 29957.32
Revenue Generated ($) 20824.43 21194.72 22425.96 24784.94 25585.96
Penalty Paid ($) 1474.08 1735.84 1451.76 490.80 56.00
Dumping Penalty Ratio(%) 7.51 8.70 6.81 2.04 0.24
Cancellation Loss ($) 504.41 2463.48 5327.35 11815.87 18645.24
Cancellation Loss Ratio (%) 2.43 11.65 23.86 48.04 73.62
No-Shows Loss ($) 1233.26 1106.56 1154.69 1083.05 886.06
No-Shows Loss Ratio(%) 5.85 5.17 5.14 4.37 3.48
Load Factor (%) 98.82 98.42 96.95 90.90 78.31
Itinerary 1 Dumping Rate(%) 3.40 3.83 3.77 1.57 0.25
Itinerary 2 Dumping Rate (%) 2.98 3.56 2.52 0.61 0.00
Itinerary 3 Dumping Rate (%) 0.00 0.00 0.00 0.00 0.00
Average Dumping Rate (%) 2.13 2.46 2.10 0.73 0.08
No-Shows Rate (%) 7.95 6.92 6.15 4.60 3.27
Cancellation Rate (%) 2.30 10.71 19.61 35.30 47.33

Average Optimization Time (Seconds) 1.20 1.22 1.20 1.18 1.15

Table 2: Standard deviation of FCFS policy performance (Monte Carlo simulation results)

Cancellation Probability (%) 1 5 10 20 30

Upper Bound Gap(%) 7.06 7.31 7.35 7.79 9.91
Upper Bound ($) 0.00 0.00 0.00 0 0.00
Revenue Generated ($) 2224.79 2282.05 2326.86 2364.11 2969.14
Penalty Paid ($) 1293.21 1567.44 1573.04 1006.04 367.98
Dumping Penalty Ratio(%) 7.12 8.41 7.81 4.31 1.65
Cancellation Loss ($) 446.53 949.91 1375.83 2108.13 2396.68
Cancellation Loss Ratio (%) 2.14 4.45 6.12 9.44 11.26
No-Shows Loss ($) 594.63 579.88 533.81 543.69 523.66
No-Shows Loss Ratio(%) 2.60 2.57 2.30 2.14 2.03
Load Factor (%) 1.93 2.06 3.27 5.57 7.78
Itinerary 1 Dumping Rate(%) 3.62 4.46 5.02 3.66 1.51
Itinerary 2 Dumping Rate (%) 3.56 4.34 3.71 2.08 0.00
Itinerary 3 Dumping Rate (%) 0.00 0.00 0.00 0.00 0.00
Average Dumping Rate (%) 1.82 2.19 2.25 1.47 0.50
No-Shows Rate (%) 2.49 2.23 1.80 1.53 1.21
Cancellation Rate (%) 1.26 2.51 2.99 3.27 3.15

Average Optimization Time (Seconds) 0.02 0.03 0.03 0.03 0.03

Table 3: Average performance of LPP (Monte Carlo simulation results)

Cancellation Probability (%) 1 5 10 20 30

Upper Bound Gap (%) 7.68 6.50 6.51 7.87 11.15
Upper Bound ($) 31514.33 31231.22 30901.25 30340.00 29957.32
Revenue Generated ($) 29092.84 29201.26 28888.32 27951.12 26617.83
Penalty Paid ($) 2702.00 1944.16 1311.76 450.88 28.96
Dumping Penalty Ratio(%) 9.48 6.83 4.60 1.57 0.10
Cancellation Loss 658.70 3076.53 6379.55 12890.40 19538.67
Cancellation Loss Ratio (%) 2.27 10.62 22.27 46.62 74.22
No-Shows Loss ($) 1708.08 1621.63 1498.39 1177.64 923.90
No-Shows Loss Ratio (%) 5.81 5.54 5.18 4.22 3.50
Load Factor (%) 99.26 98.57 97.00 90.40 77.61
Itinerary 1 Dumping Rate(%) 8.15 5.79 4.02 1.36 1.23
Itinerary 2 Dumping Rate (%) 8.02 5.41 3.18 0.91 0.03
Itinerary 3 Dumping Rate(%) 0.00 0.00 0.00 0.00 0.00
Network Dumping Rate(%) 5.39 3.73 2.40 0.75 0.05
No-Shows Rate (%) 10.05 8.95 7.70 5.62 4.05
Cancellation Rate (%) 2.79 12.72 24.19 43.79 59.13

Average Optimization Time (Seconds) 1.17 1.19 1.19 1.16 1.14
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Origin Hub
c1 = 50

f2 = 145
γ2 = 580
q2 = 0.9
∀t p2t = 0.3

c2 = 50

f1 = 125
γ1 = 500
q1 = 0.9
∀t p1t = 0.4

Itineray 3: Origin-Destination

Itineray 1: Origin-Hub Itineray 2: Hub-Destination

f3 = 1000
γ3 = 4000
q3 = 0.9
∀t p3t = 0.1

∀t q′1t = 0.05
r1 = 62.5
r′1 = 87.5

∀t q′2t = 0.05
r2 = 72.5
r′2 = 101.5

∀t q′3t = 0.05
r3 = 500
r′3 = 700

Destination

Figure 2: Sample Airline Network for benchmarking LPP performance

Table 4: Standard deviation of LPP performance (Monte Carlo simulation results)

Cancellation Probability (%) 1 5 10 20 30

Upper Bound Gap (%) 2.66 3.67 3.70 3.80 4.01
Upper Bound ($) 0.00 0.00 0.00 0.00 0.00
Revenue Generated ($) 839.47 1146.12 1144.60 1154.04 1201.05
Penalty Paid ($) 2350.44 1798.67 1544.32 974.96 257.95
Dumping Penalty Ratio(%) 8.43 6.52 5.41 3.45 0.84
Cancellation Loss 615.82 1267.98 1749.28 2111.02 2335.58
Cancellation Loss Ratio (%) 2.15 4.46 6.46 8.95 11.60
No-Shows Loss ($) 809.66 774.10 699.83 600.20 516.08
No-Shows Loss Ratio (%) 2.59 2.59 2.34 2.07 1.94
Load Factor (%) 1.55 2.19 3.58 6.31 7.89
Itinerary 1 Dumping Rate(%) 2.19 1.74 0.91 0.63 0.36
Itinerary 2 Dumping Rate (%) 2.02 1.33 0.90 0.49 0.02
Itinerary 3 Dumping Rate(%) 0.00 0.00 0.00 0.00 0.00
Network Dumping Rate(%) 1.40 1.02 0.60 0.37 0.13
No-Shows Rate (%) 10.05 8.95 7.70 5.62 4.05
Cancellation Rate (%) 1.77 3.15 3.58 3.90 3.47

Average Optimization Time (Seconds) 0.03 0.03 0.04 0.02 0.03

Optimization time is one of the most important metrics in evaluation of an
algorithm’s performance. This point becomes more relevant after we consider
the fact that commercial revenue management models need to present results in
real-time. The calculation time under Bellman Equation has exponential compu-
tational complexity as more seats are added to flight legs since state space too,
grows exponentially. This makes the dynamic programming intractable in large
Airline Networks.

Figure 3 shows the average optimization time as a function of number of seats
at each flight leg and time horizon of the problem. The average optimization
time under LPP is clearly independent from number of seats at each flight leg.
Furthermore with time horizon of the problem increasing optimization time grows
linearly. In fact the optimization time has no non-linear relationship with these
two factors.
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Figure 3: Average optimization time as a function of time horizon, and flight leg seats

5. CONCLUSIONS and SUGGESTIONS

In this paper we simultaneously addressed the overbooking, no-shows, can-
cellation, and refunding constraints in airline revenue management problem. We
developed a dynamic program to address this problem and we showed it follows
a bid-pricing policy for which the value function is intractable. We created a
closely related linear program to tackle this challenge and proved that our linear
programming formulation serves as an upper bound to the dynamic program. In
addition, we constructed a decision rule based on our linear program to approx-
imate the optimal decision rule of the dynamic program. We showed that under
certain circumstances our decision rule is asymptotically optimal. Finally, we pro-
vided numerical results to represent the quality of our approximate solution. For
further research we propose inclusion of upgrades, group arrivals and capacity sub-
stitutability in this model as it will add further to how realistic it is in addressing
airline revenue management networks.
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Objective function deviation (%) Running time
p Best known VNS VNS+ VNS VNS+ VNS VNS+
2 815313.31 815313.31 815313.31 0.00 0.00 0.08 0.00
3 551062.88 551062.88 551062.88 0.00 0.00 0.41 0.25
4 288191.00 288191.00 288191.00 0.00 0.00 0.00 0.01
5 209068.80 209068.80 209068.80 0.00 0.00 0.00 0.00
6 180488.20 180488.22 180488.22 0.00 0.00 0.00 0.00
7 163704.17 163704.17 163704.17 0.00 0.00 0.00 0.27
8 147050.80 147050.80 147050.80 0.00 0.00 0.86 0.48
9 130936.12 130936.13 130936.13 0.00 0.00 0.83 0.56

10 115339.03 115339.03 115339.03 0.00 0.00 5.95 0.00
11 100133.20 100133.20 100133.20 0.00 0.00 0.00 0.00
12 94152.05 94152.05 94152.05 0.00 0.00 0.00 2.94
13 89376.81 89454.76 89454.76 0.09 0.09 2.00 3.22
14 84807.67 84807.67 84807.67 0.00 0.00 6.58 9.33
15 80177.04 80177.04 80198.74 0.00 0.03 4.59 5.59

Table 5: ARLS results for n = 654 and small values of p with α = 1/2 and g = 3




