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Abstract: For clustering problems based on the model of mixture probability distribu-
tion separation, we propose new Variable Neighbourhood Search algorithms (VNS) and
evolutionary genetic algorithms (GA) with greedy agglomerative heuristic procedures
and compare them with known algorithms. New genetic algorithms implement a global
search strategy with the use of a special crossover operator based on greedy agglomerative
heuristic procedures in combination with the EM algorithm (Expectation Maximization).
In our new VNS algorithms, this combination is used for forming randomized neighbour-
hoods to search for better solutions. The results of computational experiments made
on classical data sets and the testings of production batches of semiconductor devices
shipped for the space industry demonstrate that new algorithms allow us to obtain better
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results, higher values of the log likelihood objective function, in comparison with the EM
algorithm and its modifications.

Keywords: Clustering, Variable Neighbourhood Search, Genetic Algorithm, Greedy

Heuristic, Agglomerative Heuristic, Expectation Maximization.
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1. INTRODUCTION

The mixture distribution separation problem belongs to the class of clustering
problems based on probability distribution densities with unknown parameters.
To solve this kind of problems means that we have to find the parameters of these
distributions. A criterion (objective function) for finding the required parameters
is the log likelihood function. A clustering problem solution implies the use of
data from various origins. Data can be generated by different kinds of probability
distributions of a random variable. In our work, we assume that the entire data
volume is generated by a mixture of several multidimensional distributions, which
obey the normal, or near normal, distribution. Our practical data can be well
approximated by a normal distribution.

A general formulation of the mixture distribution separation problem is as
follows. Suppose that the distribution density on set X ⊂ Rn has the form of a
mixture of k distributions (we assume that the distributions are normal) [1, 2, 3]:

ρ(x) =

k∑
j=1

αjρj(x),

k∑
j=1

αj = 1, αj ≥ 0

where ρj(x) is the density of the jth mixture component, αj is its prior probability
(its “weight” in the mixture).

The problem of mixture distribution separation is to estimate the parameter
vector Θ = (θ1, ..., θk) and vector of prior probabilities A = (α1, ..., αk) having a
set of independent random observations (samples) when k is known and functions
ρj(x) are known up to their parameters θ1, ..., θk.

Values of these parameters are determined by solving the problem of maximiz-
ing the log likelihood function for given set {xi} of m data vectors:

L(Θ, A) = ln

m∏
i=1

ρ(xi) =

m∑
i=1

ln

k∑
j=1

αjρj(xi)→ max
Θ

.

An investigation of the properties of mixture probability distributions for mod-
elling new distributions was started in the 1880s by Newcomb [4] and Pearson [5],
and continued by Everitt [6], McLachlan [7], etc.

S. Aivazyan et al. [8] systematized the formulation of clustering problems and
corresponding algorithms, including the EM algorithm, and also formulated the
general extremal clustering problem.
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A. G. McKendrick proposed a procedure similar to the EM algorithm in 1926
[9] which was further developed in the 1950-70 (M. J. R. Healey, M. H. Westmacott
[10], M. I. Schlesinger [11] et al.) The name of the EM algorithm (Expectation
Maximization) was proposed in 1977 by A. Dempster et al. [12]. V. Y. Korolev
[2] systematized approaches to the numerical solution of mixture distribution sep-
aration problems, proposed special median modifications of the most popular EM
algorithm with improved stability in the results, investigated stability properties
of these modifications to perturbations in the data, proved the convergence of the
SEM (Stochastic EM) algorithm to a stationary distribution, and also proposed
criteria for determining the number of mixture components.

In 2014, L. Kazakovtsev and A. Antamoshkin [13, 14] proposed the Greedy
Heuristic Method for clustering problems based on the models of the location
theory. Their method uses evolutionary approaches. This method is an extend-
able approach for building systems for solving location and clustering problems
and pseudo-Boolean optimization problems. The systems constructed with this
method allow obtaining good results (average value of the objective function and
stability of these values) for clustering problems with a large number (up to hun-
dreds of thousands) of objects represented by multidimensional data vectors (up
to hundreds of dimensions).

In the case of high-dimensional data, application of known methods encounters
additional difficulties. For example, biological data sets usually form data arrays of
very high dimensionality. At the same time, the number of objects could be rather
small for the efficient use of classical algorithms such as the EM algorithm [1]. Di-
viding a given lot of semiconductor devices shipped for usage in the space industry
into a set of homogeneous production batches manufactured from homogeneous
raw materials is a clustering problem (unsupervised learning) with rather high
dimensionality of data vectors (up to thousands of dimensions) [1]. The number
of clusters (homogeneous batches) is unknown, however, this number has known
limitations. The problem is even more complicated because of the possible exis-
tence of outliers (separate objects that do not belong to one of the distributions
such as semiconductor devices manufactured with essential aberrations).

For clustering problems, two approaches can be used:
a. Hard clustering. Each object belongs to only one cluster. In this case, if

there is no clear boundary between clusters in the experimental data, the result
will not be appropriate (numerical characteristics of belonging to a cluster will be
indistinct).

b. Fuzzy clustering. A result is a matrix, and its elements are probabilistic
estimations of the association between the objects and the clusters.

In both approaches, classical methods [1] demand that the number of clusters
is known in advance.

In this paper, we consider fuzzy clustering based on the mixture probability
distribution separation. Problems with Gaussian (normal) distributions and their
particular cases (uncorrelated and spherical Gaussians) are in focus because of the
nature of the considered practical problems.

The paper is divided into the following sections. In Section 2, we consider
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known methods such as the EM algorithm and its modifications. In Section 3,
we propose new greedy agglomerative heuristic procedures based on the EM al-
gorithm. In Section 4, we propose new Variable Neighbourhood Search (VNS)
algorithms that use these greedy procedures for forming new neighbourhoods. In
Section 5, we propose new genetic algorithms which use new greedy procedures
as the crossover operator. In Section 6, results of our computational experiments
are shown. The advantages and disadvantages of the new algorithms and future
research are summarized in Section 7.

2. KNOWN METHODS

The most popular numerical method for solving the mixture distribution sep-
aration problems is the EM algorithm [12, 3, 2] and its modifications [15, 16, 17].
The scope of the EM algorithm is much wider than the mixture distribution sep-
aration. It includes structural identification problems [18], parameter inference in
state-space models [17], statistical inference [19], nonlinear dimensionality reduc-
tion [20] and other applications. An important topic of research is the increase in
the performance of this algorithm [21]. In our paper, we focus on the increase of
its preciseness.

The result of the EM algorithm for mixture distribution separation problems is
a set of parameter values of each of the distributions and their prior probabilities.

The EM algorithm for separation of a mixture of k distributions can be de-
scribed as follows (Algorithm 1, we consider spherical Gaussian distributions as
an example). Let S ⊂ Rn be our sample data set of m data vectors. The EM

algorithm starts with some initial parameter values θ = 〈µ〈0〉i , σ
〈0〉
i 〉 (expectation

vector of the ith distribution and its standard deviation, respectively) and initial

prior probabilities α
〈0〉
i . These parameters are further updated in accordance with

the following two-step procedure (here, t is the iteration number).
In case of the uncorrelated Gaussian distributions, the algorithm operates with

the standard deviation vector for each cluster. We used an approach with the
separation of mixtures of uncorrelated Gaussian distributions with equal standard
deviation vectors for all clusters. In this case, σj is the jth dimension of the
standard deviation vector (equal for all clusters). Its recalculation is performed in
the M-step as follows instead of (1):

(σ
〈t+1〉
j )2 =

k∑
i=1

∑
x∈S

∥∥∥x− µ〈t+1〉
i

∥∥∥2

p
〈t+1〉
i (x)/(mαi).

Accordingly, in the case of a multidimensional Gaussian distribution, the algorithm
operates with complete covariance matrices and the corresponding inverse matri-
ces. The algorithm can be adapted for problems with many kinds of probability
distributions.
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Algorithm 1 The EM algorithm

repeat

(E step). Let τi ∼ N(µ
〈t〉
i ,(σ

〈t〉
i )2In) be the density of the ith distribution:

τi(x) = (2π)−n/2σ−ni exp(‖x− µi‖2 /2σ2
i ).

for all data vectors x ∈ S
for i = 1 to k

calculate the conditional probability that x refers to the ith distribution
taking into account its current parameters:

p
〈t+1〉
i (x) = α

〈t〉
i τi(x)/(

∑
j

α
〈t〉
j τj(x)). (1)

end for
end for
(M Step) Distribution parameters are recalculated as follows:

α
〈t+1〉
i =

1

m

∑
x∈S

p
〈t+1〉
i (x);µ

〈t+1〉
i =

∑
x∈S xp

〈t+1〉
i (x)

mα
〈t+1〉
i

.; (2)

σ
〈t+1〉2
i =

1

d

∑
x∈S

∥∥∥x− µ〈t+1〉
i

∥∥∥2

p
〈t+1〉
i (x). (3)

until the log likelihood function

L〈t+1〉 =
∑
x∈S

k∑
i=1

ln(τip
〈t+1〉
i (x)) (4)

is unchanged.

3. GREEDY HEURISTIC PROCEDURES FOR MIXTURE
DISTRIBUTION SEPARATION PROBLEM

The main idea of this paper is to apply and compare the greedy heuristics
approach in combination with genetic global search strategy and the Variable
Neighbourhood Search approach to the clustering problem based on mixture dis-
tribution separation.

The idea of greedy agglomerative heuristic procedures [13, 14] is the sequen-
tial reduction of the number of clusters in the known solution of the problem.
Elements of eliminated clusters are redistributed among other clusters. This pro-
cedure starts with an infeasible solution with excessive number of clusters. Each
time, greedy heuristic procedure removes one or more clusters until the current
solution is feasible.

Our greedy agglomerative heuristic procedures contain two steps.
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Greedy agglomerative heuristic procedure

Require: two known (“parent”) solutions of our problem. These solutions are
represented by pairs of sets 〈Θ, A〉. Set Θ is a set of distributions in the
mixture. Each of the distributions is represented by its parameters. The
second set A is a set of corresponding prior probabilities.

1: Parent solution sets are merged into a pair of bigger sets. This pair is an
intermediate infeasible solution of our problem with an excessive number of
distributions.

2: The basic greedy heuristic procedure decreases sequentially the number of
distributions. In each iteration, it eliminates such a distribution in a way that
its removal gives the least deterioration in the value of the objective function.

The basic greedy heuristic procedure for mixture distribution separation prob-
lems is given below:

Algorithm 2 Basic greedy agglomerative heuristic procedure (for spherical Gaus-
sian distributions)

Require: initial number of distributions (fuzzy clusters) K, required number of
distributions k, K > k, initial solution with K distributions represented by a
pair of sets of distribution parameters and their weight coefficients 〈Θ, A〉 =〈{
N(µ

〈0〉
i , (σ

〈0〉
i )2In)

}
,
{
α
〈0〉
i

}
, i = 1,K

〉
.

Run Algorithm 1 (the EM algorithm) with initial parameters 〈Θ, A〉 to obtain
the new improved solution 〈Θ, A〉 ← EM(〈Θ, A〉).
repeat
for all i′ ∈

{
1,K

}
Form a pair of truncated sets

〈Θ′, A′〉 ←
〈

Θ\
{
N(µ

〈0〉
i′ , (σ

〈0〉
i′ )2In)

}
, A\{α〈0〉i′ }

〉
.

Run only one iteration of Algorithm 1 with initial parameters 〈Θ′, A′〉. For
the obtained solution, calculate the objective function L in accordance with
(1)-(4) :
Li′ ← L(EM1iter.(〈Θ′, A′〉)).

end for
Find index i′′ ← arg max

i′=1,k
Li′ . Form a pair of truncated sets

〈Θ′′, A′′〉 ←
〈

Θ\
{
N(µ

〈0〉
i′′ , (σ

〈0〉
i′′ )2In)

}
, A\{α〈0〉i′′ }

〉
.

Run Algorithm 1 with initial parameters represented by this pair:
〈Θ, A〉 ← EM(〈Θ′′, A′′〉). K ← |Θ|.

until K = k.

Depending on the implemented method of merging known solutions of the
problem, we offer three options for new heuristic procedures (Algorithms 3 ,4, 5).

The first procedure (Algorithm 3) complements one of the ”parent” options for
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solving the distribution separation problem represented by pair 〈Θ′, A′〉 by each of
the elements of the second ”parent” solution represented by pair of sets 〈Θ′′, A′′〉
sequentially. For this pair of sets with only one extra distribution, Algorithm 2
runs.

Algorithm 3 Greedy procedure with partial merger #1

Require: pairs of sets 〈Θ′, A′〉 =
〈{
N(µ′

〈0〉
i , (σ′

〈0〉
i )2In)

}
,
{
α′
〈0〉
i

}
, i = 1,K

〉
and 〈Θ′′, A′′〉 =

〈{
N(µ′′

〈0〉
i , (σ′′

〈0〉
i )2In)

}
,
{
α′′
〈0〉
i

}
, i = 1,K

〉
.

Lbest ← −∞; Θbest ← ∅; Abest ← ∅.

for all i′ ∈
{

1, k
}

Element-by-element, merge sets in pairs 〈Θ′, A′〉 and 〈Θ′′, A′′〉: 〈Θ, A〉 ←〈
Θ′
⋃{

N(µ′′
〈0〉
i′ , (σ

′′〈0〉
i′

)2In)
}
, A′

⋃
{α′〈0〉i′ }

〉
.

Run the basic greedy heuristic procedure (Algorithm 2) with this initial solu-
tion 〈Θ, A〉:
〈Θ, A〉 ← BasicGreedy(〈Θ, A〉).
Calculate the objective function: L← L(Θ, A).
if L > Lbest

Lbest ← L; 〈Θbest, Abest〉 ← 〈Θ, A〉.
end if

end for
return 〈Θbest, Abest〉.

The next version of this procedure (Algorithm 4) is simpler but it demands
more computational resources.

Algorithm 4 Greedy procedure with full merger

Require: (see Algorithm 3).
Merge the sets in pairs 〈Θ′, A′〉 and 〈Θ′′, A′′〉:

〈Θ, A〉 ←
〈

Θ′
⋃

Θ′′, A′
⋃
A′′
〉
.

Run the basic greedy heuristic procedure (Algorithm 2):
〈Θ, A〉 ← BasicGreedy(〈Θ, A〉).
return 〈Θ, A〉.

The third option (Algorithm 5) merges the sets partially. The first set is merged
with a randomly chosen subset of the second set. This approach gives compara-
tively good [22] results for solving k-means, k-medoid, and p-median problems [23].
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Algorithm 5 Greedy procedure with partial merger #2

Require: (see Algorithm 3).
1: Choose randomly r ∈

{
2, k − 1

}
with equal probabilities.

2: Lbest ← −∞; Θbest ← ∅; Abest ← ∅.
3: for i = 1 to k − r
4: Form a random subset Θ′′′ of r elements of set Θ′′ and a subset A′′′ of the

corresponding elements of set A′′.
5: Merge sets 〈Θ, A〉 ← 〈Θ′

⋃
Θ′′′, A′

⋃
A′′′〉 .

6: Run Algorithm 2: 〈Θ, A〉 ← BasicGreedy(〈Θ, A〉); calculate the objective
function: L← L(Θ, A).

7: if L > Lbest

8: Lbest ← L; 〈Θbest, Abest〉 ← 〈Θ, A〉.
9: end if

10: end for
11: return 〈Θbest, Abest〉.

Unlike k-means and p-median problems [22], for our problem, the very first
computational experiments showed that Algorithm 5 is comparatively inefficient.
Its efficiency can be slightly improved as follows (see Step 1 of Algorithm 5: im-
proved version).

Step 1 of Algorithm 5: improved version

1: Choose randomly r′ ∈ [0, 1). Calculate r = [(k/2− 2) r′
2
] + 2. Here, [.] is the

integer part.

In this version of Step 1, the expected number of the elements of the second
solution 〈Θ′′, A′′〉 added to the first solution is smaller than in its original version
which was designed for the k-means clustering (the greedy agglomerative procedure
for the k-means clustering uses less computational resources).

Such heuristic procedures (Algorithms 3, 4 and 5) do not improve the result
of the EM algorithm significantly. However, Algorithms 3 and 4 can be used as
a part of more complicated and more efficient search strategies such as VNS or
genetic algorithms.

4. NEW VARIABLE NEIGHBOURHOOD SEARCH ALGORITHMS

Variable Neighbourhood Search (VNS, see [24, 25, 26]) is a metaheuristic
method for solving combinatorial optimization and global optimization problems.
The VNS is used for a wide variety of problems [27, 28] including clustering [29].

Special algorithms for solving mixture distribution separation problem pro-
posed in [30] use the idea of Variable Neighbourhood Search in combination with
the greedy agglomerative heuristic procedures. These algorithms try to find bet-
ter solutions in one of the neighbourhoods of a given known solution. To form
this neighbourhood, we use greedy agglomerative heuristic procedures. For many
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problems, such algorithms allow us to obtain more precise results in comparison
with the EM algorithm and its modifications.

For the VNS algorithm, we must define a set of neighbourhoods SN of some
current solution X. We choose a neighbourhood S ∈ SN and search for a solution
with better value of the objective function. If such a solution has been found, we
replace our current solution with the new one and continue our search process. If
the solution can not be found in S, we choose another neighbourhood S from the
set SN and try to search for a better solution in S.

For our problems, we propose the VNS algorithm as follows (see Algorithm 6).

Algorithm 6 Variable neighbourhood search for mixture distribution separation

Require: Initial number of neighbourhood sstart ∈ {1, 2, 3}, initial solution
〈Θ, A〉, randomly chosen.
Run the EM-algorithm: 〈Θ, A〉 ← EM(〈Θ, A〉).
Initialize the current neighbourhood nubmer: s← sstart.
i ← 0; j ← 0 (number of iterations with no improved result in the current
neighbourhood and number of switched neighbourhoods with no improved result,
respectively).
loop

Run the EM-algorithm with a random initial solution 〈Θ′, A′〉 =
EM(random).
repeat

Depending on the value of s (values 1, 2 or 3 are allowed), run Algorithm 3,
5 or 4 for the initial solutions 〈Θ, A〉 and 〈Θ′, A′〉, respectively. Obtain the
resulting solution 〈Θ′′, A′′〉.
if L(Θ′′, A′′) > L(Θ, A)
〈Θ, A〉 ← 〈Θ′′, A′′〉; i← 0; j ← 0.

else
i← i+ 1.
if i ≤ imax

i← 0; j ← j + 1, s← s+ 1.
if s > 3
s← 1.

end if
if j > jmax

return 〈Θ, A〉.
end if

end if
end if

until j ≤ jmax.
end loop

There are two important parameters: imax (number of unsuccessful searches
in the current neighbourhood) and jmax (number of unsuccessful neighbourhood



60 L. Kazakovtsev, et al. / Algorithms with Greedy Heuristic Procedures

switches). We set jmax = 2 and imax = 2k (here, k is number of distributions in the
mixture). Computational experiments show that parameter sstart (the number of
the initial neighbourhood) is also important. We performed our experiments with
every possible value of sstart ∈ {1, 2, 3}. In Section 6, results of these experiments
are called VNS1, VNS2, VNS3, respectively.

5. NEW GENETIC ALGORITHMS WITH GREEDY HEURISTIC

Evolutionary algorithms including genetic ones show high efficiency in solving
hard clustering problems based on the k-means and similar models. Solutions
in classical genetic algorithms are represented traditionally with L-bit strings.
The Greedy Heuristic Method [13] uses genetic algorithms with real alphabet
which encode ”individuals” (intermediate solutions of the problem being solved)
by sets of points in the space Rd. We use a similar approach that encodes the
intermediate solutions in a form of sets of real number vectors for solving the
mixture distribution separation problems.

In our Algorithm 7, intermediate solutions are represented by pairs of sets Θl ={
N(µl,i, σ

2
l,iIn), i = 1, ..., k

}
, l = 1, NPOP andAl =

{
αl,i = 1/k, i = 1, ..., k

}
where

NPOP is the population size of the the algorithm, i.e. the number of ”individuals”
(intermediate solutions) used by our algorithm for recombination and generating
new intermediate solutions (child solutions). Three versions of Algorithm 7 use
various greedy procedures (Algorithms 3-5).

6. COMPUTATIONAL EXPERIMENTS

In our experiments, the execution time for all algorithms was chosen in such a
way that at least during the last third of this time, none of the algorithms improved
the objective function. The results achieved by the algorithms were fixed during
the entire execution time (Fig. 1).

In Table 1, two data sets are arrays of results of the non-destructive tests of
the integrated circuits, other data sets in Tables 1 and 2 are classical data sets
from the UCI dataset repository [31] and repository of Clustering datasets of the
School of Computing of the University of Eastern Finland [32].

For some problems, the new genetic algorithm (GA) allows obtaining the best
results in comparison with known algorithms: classical EM algorithm in the mul-
tistart mode, CEM algorithm (Classification EM [15]) multistart, SEM algorithm
(Stochastic EM [16, 33, 17]) multistart, new Variable Neighbourhood Search al-
gorithm for mixture distribution separation (the table includes results for VNS1,
VNS2 and VNS3 described in Section 4). However, the VNS algorithms for sev-
eral mixture distribution separation problems allow us to obtain better results in
a shorter time. Genetic algorithms take more time for obtaining appropriate re-
sults. Thus, VNS is more efficient for the largest problem in case of limited time
(see KDDCUP Bio 04 data set). Both GA and VNS are inefficient for small-scale
problems (see 140UD17AVK tests data set) and data sets with Boolean data (see
Chess data set).
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Algorithm 7 Genetic algorithm with greedy heuristic. Versions: GA-FULL, GA-
ONE, GA-RAND

Require: Population size NPOP .
(Initialization Step): Generate randomly NPOP initial solutions represented by

the sets of the distributions Θl =
{
N(µl,i, σ

2
l,iIn), i = 1, ..., k

}
, l = 1, NPOP and

the corresponding sets of weight coefficients Al =
{
αl,i = 1/k, i = 1, ..., k

}
.

In case of separation of normal distributions, initial values of standard deviation
are equal for all distributions and calculated as the standard deviation of the full
data set: σ2

i = 1
d

∑
x∈S ‖x− x‖

2
. The values of expectations µl,i are assigned

equal to coordinates of randomly chosen data vectors.
Run the EM algorithm runs for each of the initial solutions, the obtained objec-
tive function values are stored to variables f1, ..., fNPOP

. Initialize Niter ← 0.
loop
if the stop conditions are reached

STOP;
return the solution with the best (highest) objective function value
f1, ..., fNPOP

among the population.
end ifWe use a runtime limitation as the stop condition.
Niter ← Niter + 1; NPOP ← max{NPOP ;

⌈√
1 +Niter

⌉
+ 2};

if NPOP has changed
Initialize solution 〈ΘNPOP

, ANPOP
〉 as described in the Initialization Step.

end if
Select randomly two indexes k1,k2 ∈ {1, NPOP }, k1 6= k2. Run Algorithm 4
or Algorithm 3 for the pair of solutions represented by sets Θk1

,Θk2
and Ak1

,
Ak2 . Store the result to 〈Θ′, A′〉. Note: Version GA-FULL of our algorithm
runs Algorithm 4, version GA-ONE runs Algorithm 3 and version GA-RAND
randomly chooses one of these two algorithms with equal probabilities.
Select index k3 ∈ {1, NPOP }. We use the simplest tournament selection: the
algorithm chooses k4,k5 ∈ {1, NPOP } in a random way;
if fk4

< fk5

k3 = k4;
else
k3 = k5.

end if
〈Θk3

,Ak3
〉 ← 〈Θ′, A′〉; fk3

← L(Θ′, A′).
end loop
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Figure 1: Dynamics of changes in the results of algorithms (1 - EM, 2 - GA-ONE, 3 - GA-FULL,
4 - GA-RAND, 5 -VNS1)
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Dataset,
number of
instances m, di-
mensionality d

Number of
distributions
k, type of
distributions,
time limit

Algorithm Avg. result
L(Θ, A)
(30 runs)

Std. dev.
of
results

Chess (King-Rook
vs. King-Pawn,
m=3196, d=36,
Boolean

10, spher.,
3 min.

EM
CEM
SEM
VNS1
VNS2
VNS3
GA-FULL
GA-ONE
GA-RAND

-30525.03*
-30564.13
-30560.70
-30554.87
-30539.85
-30580.60
-30581.09
-30532.44
-30554.67

0
32.29
46.39
28.69
25.43
0
1.83
19.55
28.69

IC tests
140UD17AVK,
m=51, d=46

2,
uncorrel.,
5 sec.,

EM
VNS1
VNS2
VNS3
GA-FULL
GA-ONE
GA-RAND

3790.1*
3665.630
3665.630
3673,672
3665.6
3697.8
3707.7

104.4
0
0
44.043
0
83.4
88.0

IC tests
1526LE2,
m=3987, d=206

5, uncorrel.,
3 min.

EM
GA-FULL
GA-ONE
GA-RAND

340951.0
366487.3
350292.0
443491.0*↑⇑

1123.3
968.1
532.1
2125.1

KDDCUP04 Bio,
m=145751, d=74,
normalized

30, spher.,
500 min.

EM
CEM
SEM
VNS1
VNS2
VNS3
GA-FULL
GA-ONE
GA-RAND

-12513230
-12512718
-12514337
-12511968*↑⇑
-12511984.9
-1251265.0
-12512517
-12512818
-12512811

1256
343
684
105
278
139
159
411
639

Europe,
m=169308, d=2

40, spher.,
1.5 hours

EM
CEM
SEM
VNS1
VNS2
VNS3
GA-FULL
GA-ONE
GA-RAND

-3625957.4
-3637892.57
-3625779.08
-3625694.1
-3625691.7*↑⇑
-3625748.7
-3625740.60
-3625878.2
-3625816.2

49.56
283.94
25.06
20.148
14.77
15.402
15.19
36.34
48.03

Table 1: Comparative results
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Dataset,
number of
instances m, di-
mensionality d

Number of
distributions
k, type of
distributions,
time limit

Algorithm Avg. result
L(Θ, A)
(30 runs)

Std. dev.

Ionosphere (UCI),
m=351, d=35,
normalized

10, spher.,
30 sec.

EM
CEM
SEM
VNS1
VNS2
VNS3
GA-FULL
GA-ONE
GA-RAND

-871.405
-893.44
-879.95
-847.463
-849.352
-878.153
-960.32
-824.85*↑⇑
-832.83

15.79
7.88
15.19
23.972
28.073
41.875
23.50
4.47
14.80

Mopsi locations
(Joensuu),
m=6014, d=2,

20, spher.,
40 min.

EM
CEM
SEM
VNS1
VNS2
VNS3
GA-FULL
GA-ONE
GA-RAND

39268.66
48424.17
36272.22
50291.12
50311.64
50370.82
50443.36
49288.89
50499.90*↑⇑

9967.64
237.30
9619.60
122.86
104.68
50.99
115.25
390.47
60.91

Miss America,
m=6480, d=16,

30, spher.,
40 min.

EM
CEM
SEM
VNS1
VNS2
VNS3
GA-FULL
GA-ONE
GA-RAND

-261971.1
-262265
-261839.6
-261741.9
-261737.9
-261737
-261736*↑⇑
-261893,5
-261763,1

99.6
51.6
26.9
10.0
8.7
1.5
1.6
71.7
22.3

BIRCH-3 (UCI),
m=100000, d=2,

100, spher.,
60 min.

EM
CEM
SEM
VNS (best)
GA-FULL
GA-ONE
GA-RAND

-2567483.0
-2603150.9
-2728547
-
-2553037.9
-2348371*↑⇑
-2454123.1

4351,1
5170,3
3869,7
-
8014,0
588278,1
55965.2

Table 2: Comparative results
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Tables 1 and 2 show the average results of 30 runs of each algorithm for various
datasets. The statistical significance of the difference between the results of the
best of new algorithms (marked by ”*”) in comparison with the EM algorithm was
estimated with both Students t-test [34, 35] and Wilcoxon rank-sum test [36, 37].
If the advantage or disadvantage of the best of new algorithms is statistically
significant in accordance with Student’s t-test, this result is marked by ”↑” or ”↓”,
respectively. Advantages and disadvantages in accordance with the Wilcoxon rank-
sum test are marked by ”⇑” or ”⇓”, respectively. For both tests, the significance
level is 1%.

7. CONCLUSIONS

New genetic evolutionary algorithms and new VNS algorithms for the problems
of mixture Gaussian distribution separation allow us to obtain more precise results
in comparison with the classical EM-algorithm and its modifications running in
the multistart mode. Our new algorithm is a modification of the Greedy Heuris-
tics Method [13, 14, 22], which is efficient for solving many clustering problems
including the problem of separating the homogeneous production batches of the
electronic devices for spacecraft industry. Though known Variable Neighbourhood
Algorithm gives rather precise results in shorter time, new genetic algorithms can
be used when we must obtain the most precise results in comparison with other
known methods. This paper represents the intermediate stage of research, the set
of developed algorithms should serve as a basis for further studies.
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