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1. INTRODUCTION

Increase in the power consumption might reach limits of the generated power.
Moreover, some power generating units can take long time or may be very expen-
sive to operate at full power. Thus, any load serving entity, for example, EDF
- ”Electricity of France”, seeks tools to meet customers’ demand with the min-
imum costs, and to adjust the power demand instead of altering the supply in
real-time. Demand side management (DSM) commonly refers to programs im-
plemented by utility companies. It is about modifying the electricity consump-
tion at the customer side [14, 15] to achieve energy efficiency and reduce peaks.
Demand Response (DR) and Energy Efficiency programs are the economic tools
for DSM implementation. DR and DSM are designed to encourage end-users to
make, respectively, short-term and long-term reductions in energy demand in re-
sponse to the price. DSM is more about planning issues related to deployment of
improved technologies and changes in end-users behaviour. DR addresses opera-
tional issues. This paper deals with changing the residential customers behaviour
to make it more energy efficient and to measure its impact on the power generation
costs; also, with helping EDF and other energy providers to improve tariff offer
by proposing a new DSM pricing model as a decision making tool.

This work allows us to determine the electricity prices for residential customers
to optimize EDF profit and reduce customer’s payments. By a customer segment,
we mean a group of customers having the same behaviour with respect to the same
signal price and consumption habits. We focus on modeling pricing incentives
in residential load management programs to shift some consumption from peak
to off-peak hours so that a power producer could meet peak demands with less
production costs. Our model intends to determine new electricity prices that will
be in competition with the existing ones. The combination of both tariffs should
make a shift of some customers to a new tariff, resulting in the decrease of energy
generation costs and less consumers’ payments. An important characteristic of our
model is that the hourly demand distribution is obtained by solving a mathematical
problem.

We use bilevel optimization as a modeling tool. In economics, bilevel prob-
lems are known under various names, such as Stackelberg-Nash games, envy-free
pricing, and principal-agent problem [2, 9]. They can also be seen as a supply-
demand equilibrium problem where the demand is obtained by solving a second
level problem. Bilevel problems have arisen from the real world application in
market economy, military defense, and political science [2, 5, 9]. Although a wide
range of applications fits the bilevel programming framework [8], there is a lack of
efficient algorithms for tackling large-scale problems. In bilevel problems there are
two agents, called a leader and a follower, interacting at two levels of a hierarchi-
cal structure. Both of them deal with the same resources but have different goals.
The leader is trying to achieve his goal depending on the behaviour of the follower,
who acts in its own interests. As the leader has no guarantee that the follower
will always act in the leader’s best interests, thus, he has to take into account the
follower’s behaviour.
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In our case, the leader is an electricity provider that produces energy and has
a duty to satisfy the demands of residential customers (or consumers). Thus,
the follower corresponds to the customers who made a contract with the provider
to consume the ”resources” produced by the leader. Being determined by the
preferences and the needs of the consumers, current hourly consumption is often
unbalanced. Thus, it results in the peaks and, therefore, in involving costly power
generation technologies (nuclear energy generator, coal energy, gas, hydroelectric,
wind generators etc.). To this end, the leader has to regulate the hourly con-
sumption by pricing strategies, which are to force consumers to react on a new
pricing policy that can result in the rational usage of energy. However, when a
leader offers new prices for ”resources” consumers are not sure whether they are
preferable to the existing prices, or the leader wants only to increase his profits.
So, the consumers react according to their own interests, minimizing their elec-
tricity payments and inconveniences. Thus, it is important to clearly explain to
consumers how to gain from rationally scheduled electricity loads.

The leader’s problem (or upper level problem) is to define new prices (or pricing
policy or tariff) so to maximize profit of the company, which is the difference
between customers’ electricity payments and the energy production costs. The
consumers’ problem (or lower level problem) is to choose between the existing
and the new pricing policy to satisfy their own electricity demands, with minimal
payments and inconveniences, caused by changing the time intervals of electricity
usage. To properly model the consumers’ behaviour is a challenge. We assume
that customers minimize a dis-utility function, which is the sum of their costs (or
electricity bills) and unwillingness to change consumption habits, which may differ
depending on the category of customers. Fig. 1 presents a bilevel structure of the
problem studied in this work.

Leader’s problem:
maximize Profit=(Sales - Costs)

subject to:
Power generation capacities
Customers’ problem:
minimize (Electricity bills + Inconvenience of changes)

subject to:
Pricing policy restrictions
Demand satisfaction

Figure 1: Bilevel model.

Bilevel programming is a fairly recent branch of optimization. Its major feature
is that it includes a lower level problem in a part of the constraints of an upper
level to build the hierarchical relations [3, 6]. Each problem has its own variables
and constraints. The leader controls only a subset of all decision variables. The
remaining variables fall under the control of the follower. Depending on the type
of variables and constraints, bilevel problems may be intrinsically difficult, because
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a feasible region of an upper level problem might be non-convex, disconnected or
empty in presence of upper level constraints and / or discrete variables.

The paper is organised as follows: section 2 presents relevant related works
with similar approaches; section 3 introduces a bilevel pricing model, explains
its main components, and presents the mathematical programs for the leader’s
and follower’s problems; section 4 reports a solution approach based on duality
theory. We provide the proposed mathematical programs in sections 3.3, 4.1, 4.2,
and 4.3. In section 5, we test viability of the model, analyse different parameter
settings, and discuss the numerical results. Finally, some conclusions and future
perspectives are given in section 6.

2. STATE-OF-THE-ART

Electricity markets is evolving in recent years due to increase in power con-
sumption and deployment of renewable energy resources. This results in new
actors appearing in the electricity markets, the development of new energy reduc-
ing tools and, finally, in the consumers’ behavior changes. Sooner or later, the
households will have to start consuming centralized generated energy in a more
efficient way to reduce their bills to the energy provider. These new circumstances
require adequate mathematical structures and approaches to help producers and
consumers at electricity market to make optimal decisions. Thus, lots of papers
have recently been published about these issues.

In [11] the authors provide a large review of optimization models in energy
markets starting with the energy planning model from the 1970’s and ending with
the current-days complex equilibrium problems. They underline the advantages
of the models based on complementarity problems that generalize mathemati-
cal (linear, nonlinear, spatial price equilibria, and others) programs applying the
Karush-Kuhn-Tucker (KKT) optimality conditions.

In [17] the central economic trends in electricity market modeling are high-
lighted, and the classification of the existing mathematical structures and ap-
proaches, dictated by these trends, is done. Three types of mathematical mod-
els are mainly distinguished: optimization, equilibrium (or Cournot, Stackelberg
game theoretical model), and simulation models. Optimization models focus on
maximizing or minimizing the objective function(s) for one decision maker (often
it is an electricity producer that maximizes his profit) under a set of technical
and economic constraints. Equilibrium models represent hierarchical relations of
a market and suit for modeling competition among its participants. Simulation
models are an alternative to the equilibrium ones. They are not burdened with
strict, entirely mathematical formulation of a problem, rather using its seman-
tic description, based on a set of rules. Simulation models allow implementing
calculations to almost any kind of strategic behaviour.

In [18], an equilibrium model for electricity retailer in a demand response mar-
ket environment is proposed. The aim is to determine dynamic hourly price to
reduce the retailer energy procurement costs and modify end-customers consump-
tion schedule according to the price signal sent by the retailer. The end-customers
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minimize their electricity consumption costs subject to constraints that guaranty
comfort indoor temperature.

In [16], the authors consider the load serving entity (LSE). It procures energy
from various sources including the main grid, battery, dispatchable distributed
generators, etc., and can buy from wind/solar farms to manage and to guarantee
electricity supply to several DR aggregators (customers) in a small geographic area.
The authors propose a DR strategy (or pricing scheme) that the LSE may use to
attract flexible load customers to participate in it. According to this strategy,
the LSE charges inflexible loads (those that the LSE must serve) with the regular
retail price, and flexible loads with dynamic tariffs that are always lower or equal
to the retail price in each hour. The goal is to find optimal pricing tariffs and to
schedule flexible loads so to bring advantages to the DR aggregators. The authors
apply bilevel programming as a decision-making framework, then they convert
the bilevel optimization problem into an equivalent mixed integer linear program
(MILP) problem and replace each follower problem with its corresponding KKT
optimality conditions. Through extensive numerical results, the authors show
that the proposed scheme provides a winning solution for both the LSE and its
customers.

In [13], the authors propose the demand side bidding mechanism that enables
consumers to participate in electricity pool-market trading by offering to change
their normal patterns of consumption. Consumers’ payments are minimized at
the upper level, they include energy payments and costs to switch on/off energy
generation units. The social welfare is maximized at the lower level. Bilevel
programming framework, linearization scheme based on duality theory of linear
programming and KKT optimality conditions are used to model and solve the
problem.

In [7], a bilevel model to compute tariffs and users’ distributed generation
investments in Photovoltaic modules under a net-metering regulator is proposed.

We propose a deterministic equilibrium model to optimize the electricity tariffs.
We share a similar idea with [18]: to benefit from the flexible end-customers
consumption in order to shift it to the low-price hours in accordance with the
price signal. The difference is that our interest is to analyze the impact of dynamic
residential tariffs on the existing tariffs, to define the bonuses and the impact on
the electricity production technologies, being involved subject to demand-supply
constraints. We adapt a solution scheme, mentioned in the cited articles above.
It is based on reformulating bi-level program as a single-level MILP, then writing
down the equivalent system of Karush-Kuhn-Tucker conditions, and then applying
the Fortuny-Amat and McCarl linearization [10]. As it is common in the literature,
among multiple lower-level optimal solutions, the one that yields the best profit
for the upper level is selected. This solution is called the optimistic or strong
Stackelberg solution. We let for future research studying the case of pessimistic
solution.
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3. BILEVEL ELECTRICITY PRICING MODEL

To write down a mathematical program, we introduce the following notations.
All consumers are divided into segments according to their electricity consump-

tion habits, let S be a set of these segments. The subscribers to the existing tariff
may pass to a new one without changing the total amount of consumed electricity.
The passage might allow them to decrease their electricity bills by changing the
time periods of electricity consumption.

Let H be a time horizon. We assume that all consumers are subscribed for
Off-Peak / Peak tariff contract as it is one of the most subscribed contracts of
EDF. Nevertheless, our model might be generalized for a case with multiple tariffs.
Thus, the time horizon is divided into peak and off-peak hours. Let HP be a set
of peak hours and HC a set of off-peak hours, HP ∪ HC = H. Peak hours are
more loaded and, therefore, they are more expensive than off-peak ones under the
existing tariff.

Let Dsh (kWh) be the electricity demand of consumers of segment s at hour h.
To avoid overconsumption, the company limits consumption by C̄sh (W) for each
segment s per each hour h under new pricing policy. Usually, this value is quite
high, and a typical consumer does not reach this limit.

Let W be a parameter expressed in monetary units that represents the un-
willingness of customers to choose new pricing policy. The smaller the parameter
value is, the lower the customers’ unwillingness is.

Let Ph (cents per kWh) be the existing price for hour h. To encourage the
consumers to shift some consumption to less loaded hours, the company awards
monetary bonus B with those consumers who pass to a new tariff and shift some
loads from the peak to off-peak hours.

To cover all customer demands, the company has a set of available power
generation technologies T. Each technology t has a certain power capacity Ct

(MW) and its associated unit production costs Ft (euro). The technologies are
involved successively at each moment of time: if the total electricity demand is less
than C1, then it is totally covered by the first technology; if the hourly demand
is higher than C1, then the second technology is involved to cover the deficient
amount of energy, that is min(C2, Dsh−C1), and so on. The production costs are
calculated on the basis of a piecewise linear function of the power production.

3.1. Leader’s problem

The goal of the company is to propose a new price (ph) to maximize its profit,
which is the total sales under the existing and new prices minus the total expenses
associated with the electricity generation costs and the bonuses awarded to the
customers. It is expressed in the following objective function:

max
∑
s∈S

∑
h∈H

(PhDshr
∗
s + y∗shph)− Prod.Costs−Bq∗, (1)

where (ph) (cents per kWh) is a set of nonnegative variables controlled by the
leader that represent the new price per each hour h, (r∗, y∗, q∗) is an optimal



E. Alekseeva, et al. / A Bilevel Model to Optimize Eletricity Prices 15

solution to a customers’ problem, term Prod.Costs corresponds to the electricity
generation costs, and term Bq∗ means the total amount of bonuses awarded to
the consumers who shift the loads from the HP to HC hours.

Electricity generation costs are among the main parameters that influence on
the prices. Here, we model these costs as a piecewise linear function (shown in
Fig. 2) in amount of produced energy.

production costs

C t

Ft

amount of power
produced

Figure 2: Piecewise linear generation costs function

We use the standard mathematical programming way to model a piecewise
linear function. Let us define the auxiliary variables:

zth =

{
1 if technology t is used for hour h
0, otherwise,

and nonnegative variables ath for each t ∈ T, h ∈ H that mean the amount of
generated power using technology t at hour h.

The following constraints define the slope to which the generated amount of
energy belongs, taking into account the capacity limits:

(Ct+1 − Ct)z(t+1)h ≤ ath ≤ (Ct+1 − Ct)zth h ∈ H, t = 0, . . . , |T| − 2 (2)

ath ≤ (Ct+1 − Ct)zth h ∈ H, t = |T| − 1, (3)

where

C0 = 0. (4)

If zth = 1, then z(t+1)h might be either equal to 1 or 0. If technology t is used
with its full capacity, then ath must be equal to (Ct+1 − Ct) and z(t+1)h = 1,
which is guaranteed by inequalities (2), otherwise z(t+1)h = 0, and inequalities (2)
are verified. The total amount of generated energy is a sum over all technologies
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involved to cover the total demand, that is

∑
s∈S

(y∗sh +Dshr
∗
s) =

|T|−1∑
t=0

ath h ∈ H, (5)

where

a0h = 0 h ∈ H. (6)

Thus, the total electricity generation costs, that is term Prod.Costs in the
objective function (1), are

|T|−1∑
t=0

Ft+1

∑
h∈H

ath. (7)

3.2. Consumers’ problem

Given the existing and new prices, (Ph) and (ph) respectively, the goal of the
consumers is to minimize their electricity payments without changing the total
amount of consumed energy but changing the time periods of consumption. To
this end, the lower level objective function consists of the following components:

• payments of the customers who stay with the existing tariff after the new
pricing policy is launched;

• payments of the customers who pass to the new pricing policy;

• total amount of monetary bonus reimbursed to the customers who shift some
loads from the peak to the off-peak hours passing to the new tariff;

• and reluctance of customers expressed in monetary units to consumption
changes,

it is written down as

min
y,r,q

∑
s∈S

∑
h∈H

(PhDshrs + physh)−Bq +Wq (8)

where (ysh), (rs), and q are the lower level decision variables controlled by the
consumers:

ysh (kWh) is consumption at hour h under the existing tariff for customers
belonging to segment s charged with the new pricing policy;

rs is the ratio of so-called conservative customers, who do not choose the new
pricing policy, 0 ≤ rs ≤ 1;

q (kW) is the total amount of consumption shifted from the peak to the off-peak
hours.

Consumers’ problem has to verify the following constraints:
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all demand must be totally satisfied that is∑
h∈HC

ysh + rs
∑

h∈HC

Dsh − q =
∑

h∈HC

Dsh, s ∈ S (9)

and ∑
h∈HP

ysh + rs
∑

h∈HP

Dsh + q =
∑

h∈HP

Dsh, s ∈ S; (10)

and the amount of electricity consumed at each hour by each segment s is
capped by the provider at C̄sh:

ysh +Dshrs ≤ C̄sh s ∈ S, h ∈ H. (11)

Knowing an optimal solution (y∗, r∗, q∗) to the customers’ problem (8)–(11)
the leader can calculate its total costs and sales.

3.3. Bilevel program

The full bilevel program of the proposed pricing model is the following:

max
p,a,z

∑
s∈S

(
∑
h∈H

PhDsh)r∗s +
∑
s∈S

∑
h∈H

(y∗shph)−
|T|−1∑
t=0

Ft+1

∑
h∈H

ath −Bq∗,

subject to

(Ct+1 − Ct)zt+1h ≤ ath ≤ (Ct+1 − Ct)zth h ∈ H, t = 0, . . . , |T| − 2

ath ≤ (Ct+1 − Ct)zth h ∈ H, t = |T| − 1,

∑
s∈S

(y∗sh + r∗sDsh) =

|T|−1∑
t=0

ath h ∈ H,

C0 = 0, a0h = 0 h ∈ H,

ph ≥ 0, ath ≥ 0, zth ∈ {0, 1} h ∈ H, t = 0, . . . , |T|
(y∗, r∗, q∗) is an optimal solution to the consumers’ problem:

min
y,r,q

∑
s∈S,h∈H

(PhDsh)rs +
∑

s∈S,h∈H
physh −Bq +Wq
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∑
h∈HC

ysh + rs
∑

h∈HC

Dsh − q =
∑

h∈HC

Dsh, s ∈ S

∑
h∈HP

ysh + rs
∑

h∈HP

Dsh + q =
∑

h∈HP

Dsh, s ∈ S

ysh + rsDsh ≤ C̄sh s ∈ S, h ∈ H;

rs ≤ 1 s ∈ S;

ysh ≥ 0, rs ≥ 0, q ≥ 0 s ∈ S, h ∈ H.

4. SINGLE LEVEL REFORMULATION BASED ON
COMPLEMENTARY SLACKNESS CONDITIONS

When dealing with a bilevel problem, it is important to be sure that a lower
level problem has the uniquely determined solution, otherwise the bilevel problem
becomes ill-posed. In literature, the most common way to escape ill-posed situa-
tion is to consider pessimistic or optimistic solution concept [9]. Considering the
pessimistic point of view, the leader tries to bound the damage resulting from the
worst possible selection of the follower. We imply that the residential consumers
are unselfish and support the company in rational production of energy, in other
words, we consider the optimistic concept. Thus, among the optimal solutions
to the lower level problem, providing the same values of the lower level objective
function (8), consumers choose the solution which is the best for the company.

Different approaches are adopted to solve the problem, depending on type of
variables and constraints [1, 9, 8]. In this work we deal with a continuous case: all
the variables have real values and the lower level problem is a linear problem since
all functions are linear. In such a way, we apply a solution approach developed
for the linear mathematical programs. This solution approach is common under
the optimistic concept [3, 4, 9]. Namely, we reformulate the bilevel problem as a
mixed integer single level problem applying duality theory, Karush-Kuhn-Tucker
conditions (or complementary slackness conditions) [3, 4], and the Fortuny-Amat
and McCarl linearization [10]. A general scheme to provide a mixed-integer single
level reformulation is as follows:

Algorithm : Building of a single-level reformulation

Step 1: Write down a dual program to the consumers’ problem (8)–(11).
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Step 2: Write down the complementary slackness conditions.

Step 3: Linearize the complementary slackness conditions.

Step 4: Add upper level constraints (2)–(6).

The dual problem, complementary slackness conditions and their linearization
are in the following subsections 4.1, 4.2, and 4.3, respectively.

The obtained single level reformulation is solved by a ready to use optimization
solver (for example, CPLEX via GAMS [12]).

4.1. Dual program to the consumers’ problem

Let µHC
s , µHP

s , δsh ≥ 0, λs ≥ 0, s ∈ S, h ∈ H be the dual variables. Then the
dual program is as follows:

objective function

max
∑
s∈S

(µHC
s

∑
h∈HC

Dsh + µHP
s

∑
h∈HP

Dsh)−
∑

s∈S,h∈H
δshC̄sh −

∑
s∈S

λs

subject to:

µHC
s − δsh ≤ ph s ∈ S, h ∈ HC;

µHP
s − δsh ≤ ph s ∈ S, h ∈ HP ;

µHC
s

∑
h∈HC

Dsh + µHP
s

∑
h∈HP

Dsh − δsh
∑
h∈H

Dsh − λs ≤
∑
h∈H

DshPh s ∈ S;

∑
s∈S

µHP
s −

∑
s∈S

µHC
s ≤W −B;

δsh ≥ 0, λs ≥ 0, s ∈ S, h ∈ H.

4.2. Complementary slackness conditions for the consumers’ problem

According to the strong duality theorem, a solution (y, r, q) is optimal to the
consumers’ problem (8)–(11) if and only if there exists a vector (µHC , µHP , δ, λ)
such that the primal constraints, the dual constraints, and the complementary
slackness conditions of the consumers’ problem are satisfied, that is

∑
h∈HC

ysh + rs
∑

h∈HC

Dsh − q =
∑

h∈HC

Dsh, s ∈ S
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∑
h∈HP

ysh + rs
∑

h∈HP

Dsh + q =
∑

h∈HP

Dsh, s ∈ S

ysh + rsDsh ≤ C̄sh s ∈ S, h ∈ H;

rs ≤ 1 s ∈ S;

ysh ≥ 0, rs ≥ 0, q ≥ 0 s ∈ S, h ∈ H

µHC
s − δsh ≤ ph s ∈ S, h ∈ HC;

µHP
s − δsh ≤ ph s ∈ S, h ∈ HP ;

µHC
s

∑
h∈HC

Dsh + µHP
s

∑
h∈HP

Dsh − δsh
∑
h∈H

Dsh − λs ≤
∑
h∈H

DshPh s ∈ S;

∑
s∈S

µHP
s −

∑
s∈S

µHC
s ≤W −B;

δsh ≥ 0, λs ≥ 0 s ∈ S, h ∈ H;

δsh(C̄sh − ysh − rsDsh) = 0 s ∈ S, h ∈ H;

λs(1− rs) = 0 s ∈ S;

ysh(µHC
s − δsh − ph) = 0 s ∈ S, h ∈ HC;

ysh(µHP
s − δsh − ph) = 0 s ∈ S, h ∈ HP ;
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rs(µ
HC
s

∑
h∈HC

Dsh + µHP
s

∑
h∈HP

Dsh − δsh
∑
h∈H

Dsh − λs −
∑
h∈H

DshPh) = 0 s ∈ S;

q(
∑
s∈S

µHP
s −

∑
s∈S

µHC
s −W +B) = 0.

Notice that the consumers’ problem (8)–(11) is a linear problem with a nonempty
and bounded feasible set. Indeed, rs = 1, ysh = 0, for each s, h, and q = 0 is its
feasible solution. Thus the duality theorem is verified. These conditions provide
a single-level formulation presented in section 4.3.

4.3. Single level reformulation

Here we write down the full single level reformulation applying the Fortuny-
Amat and McCarl linearization [10].

max
∑
s∈S

(µHC
s

∑
h∈HC

Dsh + µHP
s

∑
h∈HP

Dsh)−
∑

s∈S,h∈H
δshC̄sh −

∑
s∈

Sλs −Wq −
|T|−1∑
t=0

Ft+1

∑
h∈H

ath

Upper level constraints:

(Ct+1 − Ct)zt+1h ≤ ath ≤ (Ct+1 − Ct)zth h ∈ H, t = 0, . . . , |T| − 2

ath ≤ (Ct+1 − Ct)zth h ∈ H, t = |T| − 1,

∑
s∈S

(ysh + rsDsh) =

|T|−1∑
t=0

ath h ∈ H,

C0 = 0, a0h = 0 h ∈ H,

Lower level constraints:∑
h∈HC

ysh + rs
∑

h∈HC

Dsh − q =
∑

h∈HC

Dsh, s ∈ S

∑
h∈HP

ysh + rs
∑

h∈HP

Dsh + q =
∑

h∈HP

Dsh, s ∈ S

ysh + rsDsh ≤ C̄sh s ∈ S, h ∈ H;

rs ≤ 1 s ∈ S;

Linearized complementary slackness conditions:

C̄sh − ysh − rsDsh ≤ (1− α1
sh)BN1 s ∈ S, h ∈ H;

δsh ≤ α1
shBN

2 s ∈ S, h ∈ H;
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1− rs ≤ (1− α2
s)BN3 s ∈ S;

λs ≤ α2
sBN

4 s ∈ S;

µHC
s − δsh − ph ≥ (α3

sh − 1)BN5 s ∈ S, h ∈ HC;

ysh ≤ α3
shBN

6 s ∈ S, h ∈ HC;

µHP
s − δsh − ph ≥ (α4

sh − 1)BN7 s ∈ S, h ∈ HP ;

ysh ≤ α4
shBN

8 s ∈ S, h ∈ HP ;

µHC
s

∑
h∈HC

Dsh + µHP
s

∑
h∈HP

Dsh − δsh
∑
h∈H

Dsh − λs −
∑
h∈H

DshPh ≥ (α5
s − 1)BN9 s ∈ S;

rs ≤ α5
sBN

10 s ∈ S;∑
s∈S

µHP
s −

∑
s∈S

µHC
s −W +B ≥ (α6 − 1)BN11;

q ≤ α6BN12;

Primary variables:

zth ∈ {0, 1}, ath ≥ 0, ph ≥ 0, ysh ≥ 0, rs ≥ 0, q ≥ 0 t ∈ T, s ∈ S, h ∈ H.

Dual variables:

δsh ≥ 0, λs ≥ 0, µHP
s , µHC

s s ∈ S, h ∈ H;

Auxiliary variables:

α1
sh, . . . , α

6 ∈ {0, 1} s ∈ S, h ∈ H;

where BN10, . . . , BN12 are the large numbers.

5. NUMERICAL RESULTS

In this section, we study the sensitivity of the model to parameter changes.
First, we study the interactions of the model parameters on the small-size in-
stances, and then, we launch the model on the data provided by EDF. We consider
one type of tariff: Off-Peak / Peak as it is one of the most subscribed tariffs. The
price per kWh of HC hour is cheaper than one of HP hour.

The computational experiments were performed on a PC Intel Xeon X5675, 3
GHz, RAM 96 GB running under the Windows Server 2008 operating system. We
use ILOG CPLEX 11.0 as an optimization mixed integer programming solver.
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H = {1, . . . , 4} 4-hour planning horizon
HC = {1, 2} HP = {3, 4} off-peak and peak hours
(Ph) = (10, 10, 15, 15) euro per kWh current prices
S = {1, 2} 2 consumer segments
(Dsh) = (10, 5, 15, 17 ; 2, 12, 35, 45 ) kW electricity demand
T = {1, 2, 3} 3 power technologies
(Ct) = (20, 56, 80) kW power capacity for each technology
(Ft) = (0, 2, 7) euro per kW production costs for each technology
C̄sh = 141* kW upper bound on hourly consumption
*a large number equal to the total demand.

Table 1: Test instance. Input data.

5.1. Test instance

The input data for the test instance are shown in Table 1. In this instance,
a time horizon of 4 hours is divided into 2 peak and 2 off-peak hours. The total
initial consumption during the off-peak hours is less than during the peak hours:
29kW and 112kW, respectively. To cover this demand, the company involves all
technologies: first technology covers the first 20kWs of demands, and if it is not
enough, the second technology is used to cover the next 36 kWs, and then the
remaining technology is involved to cover the rest demanded kWs.

Table 2, lines 2–3 present the values of Profit, Sales, and Costs under the
existing pricing policy (column Prices). Analysing the initial demand profile, it
can be seen that the first technology is not used with its full capacity, as 11kW
(8kW and 3kW during the first and the second HC hours, respectively) are under
loaded. Thus, the company could reduce the production costs if these 11kW were
shifted from some HP to these HC hours. The question to be answered is ”Which
prices and bonuses should be assign to interest the consumers to change their way
of consumption?”.

Table 2, lines 5–11 show the results obtained by the model with the different
parameters, such as bonus B and unwillingness of customers W to pass to the new
pricing policy.

First, we fix the bonus B to zero and change W : 1, 3.3, and 3.5 (lines 5–7).
We can see that given these input data, the model finds the new prices such that
HC hours are less expensive than HP hours (column Prices in Table 2), and
results to the less production costs (column Costs in Table 2) with a new way of
electricity consumption. The solutions with q = 11kW (lines 5, 6), most likely
indicate that 1 and 3.3 are too small values for W in comparison with other input
parameters. Under these parameter values, the model is not sensitive to W , since
11kW is the maximum amount of energy that might be shifted from HP to HC
hours to involve the less expensive production technology entirely. If we increase
the unwillingness of consumers W up to 3.5, then it starts playing its role in the
model resulting in only 6.4kW of consumption shifted from HP to HC hours. The
reluctance of customers is a quite difficult parameter to be estimated. Additional
statistical or data mining methods should be involved to appropriately measure
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its values. Our goal is to show its impact on the model solutions.
Table 2, lines 8–11 present the impact of the bonus value B under the fixed

parameter W . The results show that B equaled to 0.3 is not enough to encourage
consumers to shift their loads from HP to HC hours although around 70% of
consumers of the second segment (r2 = 0.33) are choosing the new pricing policy.
When B is equal to 0.7, 0.75, and 0.8, we observe the shifts from HP to HC hours.
Remember, the bonuses represent the additional costs for the company, whereas
they make HC hours less expensive for the consumers.

Fig. 3–5 show graphically the hourly electricity consumption profiles when
B = 0. Similar consumption profiles have been observed whenB > 0, so for brevity
we do not present them graphically. The columns along a horizontal axis depict
the demand profile for two segments together at each hour; a left vertical axis
shows the amount of consumed energy; the right vertical axis shows graphically
the capacities of each technology. The dashed (solid) line connects the points that
represent the total amount of demand at each hour under the existing (new) prices.
We can see that the consumption with the new pricing policy is always covered by
two less expensive production technologies.

Figure 3: Impact of consumers’ reluctance on the consumption shifts, provided B = 0,W = 1.
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Figure 4: Impact of consumers’ reluctance on the consumption shifts, provided B = 0,W = 3.3

Figure 5: Impact of consumers’ reluctance on the consumption shifts, provided B = 0,W = 3.5

Table 3 shows the impact of production costs on the behaviour of the model.
We change the production costs Ft for each technology, keeping the previously
tested values of parameters B and W . We observe that as soon as the production
costs for the first technology is increased (F1 from 0 to 1 euro per kW), there is no
shift from HP to HC hours in the optimal solutions, Table 3 lines 6–7. However,
if we increase the production costs for the second technology (F2 from 2 to 20 euro
per kW), then the optimal solution involves the less expensive technology entirely
(the shifts are 11kW), Table 3 line 12. The higher price for the third technology
does not have the same impact as it has on the first technology: the second
technology is 6kW under loaded for the 3rd HP hour in the initial consumption
profile, so it is more profitable for the consumers to shift these 6kW from the 4th
to the 3rd HP hour than to change their habits shifting from HP to HC hours,
Table 3 line 17.
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1 B W Prices Profit Sales Costs q (r1; r2)
HC hour;HP hour

2 Initial values
3 10;15 1796 1970 174
4 Results
5 0 1 13.7 ; 14.4 1840.3 1962.3 122 11 (1; 0)
6 0 3.3 12.5 ; 14.5 1830.5 1957.2 122 11 (0.65; 0.05)
7 0 3.5 12.5 ; 14.5 1826 1957.2 131.2 6.4 (1; 0.87)
8 0.3 3.5 12.8 ; 14.5 1826 1970 144 0 (1; 0.33)
9 0.7 3.5 13.1 ; 14.5 1826 1961.7 131.2 6.4 (1; 0.86)
10 0.75 3.5 13.2 ; 14.44 1826 1956.3 122 11 (1; 0.86)
11 0.8 3.5 13.2 ; 14.43 1826 1956.8 122 11 (1; 0.85)

Table 2: Impact of reluctance and bonus parameters on prices, profit, sales and costs

1 B W Prices Profit Sales Costs q (r1; r2)
HC hour; HP hour

2 Initial values
3 10;15 1727 1970 243
4 Prod. costs: (Ft) = (1, 2, 7)
5 Results
6 0 3.5 12.6 ; 14.6 1757 1970 213 0 (1; 0.87)
7 0.7 3.5 13.15 ; 14.45 1757 1970 213 0 (1; 0.87)

8 Initial values
9 10 ; 15 539 1970 1431
10 Prod. costs : (Ft) = (1,20, 7)
11 Results
12 0.7 3.5 13.15 ; 14.45 960 1955.7 988 11 (1; 0.17)

13 Initial values
14 10 ; 15 1349 1970 621
15 Prod. costs: (Ft) = (1, 2,70)
16 Results
17 0.7 3.5 13.15;14.45 1757 1970 213 0 (1; 0.86)

Table 3: Impact of production costs

5.2. Instance with realistic consumption profiles

We had at our disposal the real hourly consumption profiles and prices, Fig. 6
shows the initial hourly demand. There are two power generation technologies:
the first on limited to total production of 3000 MW, the second one operating
from 3000 MW up to 9000 MW. We see that the current consumption is not
smooth and for some hours (1, 10, 13,. . ., 19 and 24) the second power technology
is mandatory. Table 4 contains the real input data. Notice the given production
costs per kW (1 cent per kW for the first technology, and 3.5 cents for the second
one) are significantly lower than hourly prices per kW (104.4 cents per kWh for
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HC hour, and 151 cents for HP hour). Our goal is to find new hourly prices, to
scale bonuses and customers’ reluctance in accordance with other data to smooth
electricity consumption, and to reduce production costs.

S = {1} one consumer segment
H = {1, . . . , 24} 24-hour planning horizon
HC = {24, 1, . . . , 7} off-peak hours
HP = {8, . . . , 23} peak hours
T = {1, 2} 2 power technologies
(Ct) = (3000, 9000) MW power capacities for each technology
(Ft) = (1, 3.5) cents per kW production costs for each technology
Ph = 104.4 cents per kWh h ∈ HC current price for HC hour
Ph = 151 cents per kWh h ∈ HP current price for HP hour
C̄sh = 9000 MW upper bound on hourly consumption

Table 4: Real input data

1 B W Prices Profit Sales Costs q
(euros per MW) HC hour ; HP hour (in %) (in %) (in %) (in MW)

2 0 0.1 141.5 ; 141.5 +1.3 -0.0 -80 1008.2
3 0 10 139 ; 142.1 +1.27 -0.03 -80 1008.2
4 0 100 117.6 ; 147.6 +1.2 0.0 -74 0
5 20 100 129.6 ; 144.52 +1.2 0 -74 0
+(−) means increase (decrease) in % in comparison with initial values

Table 5: Results on realistic consumption profiles

We have tested the model with different values of bonuses and reluctance.
First, we consider W equaled to 0.1, 10 and 100. Table 5 presents the obtained
results. We observe that when W = 0.1 or 10 (lines 2 and 3), consumers shift
1008.2MW from HP to HC hours without any bonus (B = 0). It means that
these values of W are not scaled properly with respect to other data. The induced
shifts allow the company to decrease generation costs of 80%. Because of the
significant difference between the production costs and hourly prices per kW, a
reduction of 80% in Costs induces an increase of only 1.3% in Profit. In spite
of the slight decrease in Sales the company’s Profit increases by 1.3% thanks
to the reduction in production costs. The new prices for HP hours are lower so
the optimal consumption profiles in optimistic case are smooth during HP hours.
According to the new consumption profiles, the first power production technology
operates almost at full limit hour by hour, and the company can drastically reduce
the use of the second technology (only three times at HP hours 13, 16, and 17),
Fig. 7.

If W is increased up to 100, then the customers’ reluctance to consumption
changes is so high that there is no shift from HP to HC hours, i.e. q = 0. However,
the new consumption profiles are smoother and the number of peaks is reduced,
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resulting in a reduction of costs of 74%, Fig. 8. If bonus B is increased up to
20 euros per MW, then it does not induce a shift from HP to HC hours, line 5.
Increasing bonus do not make sense for these input data because the production
costs become too high to maintain profit.

Figure 6: Real electricity consumption profiles hour by hour.

Figure 7: Impact of parameter changes. B = 0, W = 0.1.

Figure 8: Impact of parameter changes. B = 20 euros per MW, W = 100.
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The largest size instances presented here have about 500 variables and con-
straints. All of them have been solved optimally in less than one minute. However,
since the total number of variables and constraints in the single level formulation
is O(S ∗H+T ∗H), the bigger size input data might increase computational time.
In this case, some preprocessing steps (to fix the values of some variables) might
be done to speed-up the solution process and the bounds on the large numbers
BN10, . . . , BN12 have to be tightened.

6. CONCLUSION

In this work we have proposed a demand side management model to determine
the new electricity prices, optimising the existing ones. The new pricing policy
aims to modify consumers’ behaviour, shifting the consumption from peak to off-
peak hours, resulting in a decrease of electricity production costs.

We have used bilevel optimization that allows us to model the situation in
which a decision of a load serving entity depends on the optimal consumers’ de-
cision. As a matter of fact, the particularity of the model is to anticipate the
consumers’ behaviour and to introduce bonuses to encourage consumers to shift
their loads. We have considered the following driven parameters: consumers’ re-
luctance, bonuses, and production costs. Our computational experiments have
shown their impact on prices and the new consumption profiles.

This model can be used by a load serving entity as a tool to test macro-level
decisions that aim to encourage the residential consumers to be more rational
regarding hourly electricity consumption.

The model has been applied to the test instances and real life demand profiles
were provided by the Electricity of France company. The test instances allowed
analysing the impact of the driven parameters on the consumers’ behaviour and
the involved power generation. The optimal solutions to the realistic case are
characterized by the reduction in consumption peaks. This also results in a de-
crease in power generation costs thanks to the limited usage of the more expensive
technology, required in case of consumption peaks.

Consumers’ reluctance and bonuses might be different for each customer’s seg-
ment. Thus, a further perspective of this work is to introduce several different
segments in the model and test it on given and appropriately scaled data. Also,
this model could be adapted to account for uncertainty aspects related to con-
sumers’ behaviour or the electricity provider strategic behaviour.

The solution approach used in this work is based on the replacement of the
lower level problem by its Karush-Kuhn-Tucker conditions, resulting in one level
programming problem. It estimates the optimistic profit for the company. In
perspective, this approach might be modified to estimate the company’s profit in
a pessimistic case.
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