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Abstract: This paper was motivated by a practical optimization problem that appeared
in electricity market of Mongolia. We consider the total average cost minimization prob-
lem of power companies of the Ulaanbaatar city. By solving an identification problem,
we developed a fractional model that quite adequately represents the real data. The
obtained problem turned out to be a fractional minimization problem over a box con-
straint, and to solve it, we propose a method that employs the global search theory for
d.c. minimization.
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1. INTRODUCTION

The average cost minimization problem plays an important role not only in en-
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gineering and management sciences but also in optimization theory and its meth-
ods. As it has already been shown in [9], the average cost minimization problem
for a company producing one product belongs to a class of global optimization.
In particular, it was revealed that the average cost function is pseudoconvex [9].
Moreover, maximization of efficiency of the average productivity is formulated as
the fractional programming [5]. In this paper, we consider the average cost min-
imization problem with multiple variables in the form of the following fractional
program

(P) f(x) :=

n∑
i=1

ψi(xi)

〈e, x〉
↓ min

x
, x ∈ Π,

where e = (1, . . . , 1) ∈ IRn, Π is a box, f is the total average cost function, ψi
is the cost function of the power company i, and xi is the amount of electricity
generated by the company i, i = 1, . . . , n.

Problem (P) is obviously nonconvex (with numerous local extrema). However,
the aim is to minimize only one ratio, which certainly facilitates the solution of the
problem. The most common approach to solving the problem is the Dinkelbach
method [8] with nonconvex subproblems. There are numerous methods in the lit-
erature for solving fractional program. They include variable transformation [24],
direct nonlinear programming approach [1], duality approach [2], and parametric
approach [18]. A detailed outline on the major areas of fractional programming
applications is given in [24]. Another real-world application of fractional program-
ming is described in [21]. Fractional terms composed of signomial functions are
first decomposed into convex and concave terms by convexification strategies, and
then converted into a convex program in [19]. Recently, an efficient global search
method for fractional program, based on two different approaches, was proposed
in [11, 12, 13, 15]. The first approach develops Dinkelbach’s idea and uses a so-
lution to an equation with the optimal value of an auxiliary d.c. optimization
problem with a vector parameter. The second one deals with another auxiliary
problem over nonconvex inequality constraints. Both auxiliary problems are d.c.
optimization problems, which allows us to apply the Global Optimization Theory
[26, 27, 28, 29], recently successfully applied to another practical problem arising
in mineral processing industry of Mongolia [10, 16]. In this paper we develop a
two-component algorithm based on the global optimality conditions for d.c. op-
timization problems [26, 28] to solve the average cost minimization problem for
power companies of Mongolia.

2. THE D.C. PROGRAMMING APPROACH TO FRACTIONAL
PROGRAM

Let us consider the following problem of the fractional optimization [4, 25]

(Pf ) f(x) :=

m∑
i=1

ψi(x)

ϕi(x)
↓ min

x
, x ∈ S,
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where S ⊂ IRn is a convex set, and ψi : IRn → IR, ϕi : IRn → IR,

(H0) ψi(x) > 0, ϕi(x) > 0 ∀x ∈ S, i = 1, . . . ,m.

First, to solve Problem (Pf ), using the d.c. minimization, we consider the
following auxiliary optimization problem

(Pα) Φ(x, α) :=

m∑
i=1

[ψi(x)− αiϕi(x)] ↓ min
x
, x ∈ S,

where α = (α1, . . . , αm)> ∈ IRm is a vector parameter.
Due to the theoretical foundation developed in [11, 15], we are able to avoid

the consideration of fractional program, and address the parametrized problem
(Pα) with α ∈ IRm+ . Hence, we propose to combine solving Problem (Pα) with a
search with respect to the parameter α ∈ IRm+ in order to find the vector α0 ∈ IRm+
such that V(α0) = 0, where

V(α) := inf
x
{Φ(x, α) | x ∈ S} = inf

x

{
m∑
i=1

[ψi(x)− αiϕi(x)] : x ∈ S

}
.

Denote Φi(x) := ψi(x)− αki ϕi(x), i = 1, . . . ,m.
Let [0, α+

i ] and [vki , u
k
i ] be an initial segment and a k-segment for varying αi,

respectively (0 ≤ vki < uki ≤ α
+
i , i = 1, . . . ,m).

Let a solution z(αk) to Problem (Pαk) be given, and assume that we have
computed Vk := V(αk).

αk-bisection algorithm

Step 1. If Vk > 0, then set vk+1 := αk, αk+1 := 1
2 (uk + αk).

Step 2. If Vk < 0, then set uk+1 := αk, αk+1 := 1
2 (vk + αk).

Step 3. If Vk = 0 and min
i

Φi(z(α
k)) < 0, then set

αk+1
i :=


ψi(z(α

k))

ϕi(z(αk))
∀i : Φi(z(α

k)) < 0,

αki ∀i : Φi(z(α
k)) ≥ 0.

In addition, set vk+1 := 0, uk+1 := tk+1α
k+1, where tk+1 =

α+

max
i
αki

.

Stop: we computed the values αk+1, vk+1, and uk+1.

Therefore, in order to verify the equality V(α0) = 0, we should be able to find a
global solution to Problem (Pα) for every α ∈ IRm+ . Since ψi(·), ϕi(·), i = 1, . . . ,m,
are simply convex or generally d.c. functions, it can readily be observed that
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Problem (Pα) belongs to the class of d.c. minimization. As a consequence, in
order to solve Problem (Pα), we can apply the Global Search Theory [26, 28].

Let us emphasize the fact that this method for solving Problem (Pf ) of frac-
tional optimization consists of 3 basic stages: the (a) local and (b) global search
methods for Problem (Pα) with a fixed vector parameter α and (c) the method
of finding the vector parameter α at which the optimal value of Problem (Pα) is
zero, i.e. V(α) = 0.

In addition, to solve the fractional program as the d.c. constraints problem,
we consider the following optimization problem with a nonconvex feasible set

(Pc)

 f0 :=
m∑
i=1

αi ↓ min
(x,α)

, x ∈ S,

fi := ψi(x)− αiϕi(x) ≤ 0, i = 1, . . . ,m.

In [12] it was proved that for any solution (x∗, α∗) ∈ IRn×IRm to Problem (Pc),
the point x∗ will be a solution to Problem (Pf ). Therefore, we can solve Problem
(Pc) using the exact penalization approach for d.c. optimization developed in [28]
as well as the global search theory for solving the d.c. constraints problem [26].

It should be noted that, unlike solving Problem (Pf ) by d.c. minimization, αi
will be found simultaneously with the solution vector x, because αi are variables,
although auxiliary ones, of Problem (Pc).

The results [14] of computational testing of the two approaches to a fractional
programming problem suggest that we should combine them to solve fraction pro-
grams. For example, we can use the solution to Problem (Pc) to search for the
parameter α that reduces the optimal value function of Problem (Pα) to zero.
This idea could be implemented by the following algorithm.

Two-component algorithm

Step 0. (Initialization) k := 0, vk := 0, uk := α+.

Step 1. Starting from feasible point (xk, αk), implement the local search method
from [12] to find a critical point (zk, α̂k) in d.c. constraints problem (Pc).

Step 2. (Stopping criterion) If Vk := V(α̂k) = 0 and min
i

Φi(z
k) ≥ 0, then STOP:

zk ∈ Sol(Pf ).

Step 3. Starting from the critical point zk, find a solution z(α̂k) to Problem (Pα̂k),
using the global search strategy for d.c. minimization problem [26].

Step 4. (Stopping criterion) If Vk := V(α̂k) = 0 and min
i

Φi(z(α̂
k)) ≥ 0, then STOP:

z(α̂k) ∈ Sol(Pf ).

Step 5. Set xk+1 := z(α̂k). Implement αk-bisection algorithm to find new parameters
αk+1, vk+1 and uk+1; k := k + 1 and go to Step 1.

Further, we describe in detail how we use the two-component algorithm to solve
the average cost minimization problem provided by power companies of Mongolia.
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3. IMPLEMENTATION ISSUES AND NUMERICAL RESULTS

The Mongolian electric energy system consists of five subsystems such as Cen-
tral, Western, Altai, Dornod, and South. These subsystems provide almost entirely
electric energy consumption of the country while the Central electric energy sys-
tem produces 90% of the whole electric energy. In the Central energy system,
Thermal power station 2 (TPS2), Darkhan power station, Thermal power station
3 (TPS3), Thermal power station 4 (TPS4), Erdenet power station, and Salkhit
wind renewal energy station operate. Therefore, it is important to minimize av-
erage cost of the Central energy system. For this purpose, we consider the above
six stations or power companies (i = 1, . . . , 6).

In practice, the most popular forms of cost functions are cubic functions

ψi(xi) = aix
3
i + bix

2
i + cixi + di, (1)

where ai, bi, ci, di are parameters of functions ψi(xi), i = 1, . . . , n.
The parameters ai, bi, ci, di for modeling cost functions of the stations of

Mongolian Central energy system are found by solving identification problems for
all i = 1, . . . , 6:

Fi(a, b, c, d) =

M∑
j=1

[
ai(x

j
i )

3 + bi(x
j
i )

2 + cix
j
i + di − ψji

]2
↓ min
ai,bi,ci,di

, (2)

based on real industrial data employing the MATLAB, where M is the number of
observations. As a result, the parameters are:

a = (2.988595; 0.295274; 0.004967;−0.002076;−0.1775425;−0.315017),
b = (−6.711518;−1.654832;−0.107325; 0.145404; 0.4377455; 1.251723),
c = (5.536400; 3.014577; 1.951971;−1.94024; 1.124094; 0.158459),
d = (−0.599326;−0.289433;−0.834204; 23.081606; 0.0189135; 0.426788).

(3)

The technological requirements for the variables are given by the box con-
straints Π:

0.35 ≤ x1 ≤ 1.31, 20.56 ≤ x4 ≤ 33.56,
0.85 ≤ x2 ≤ 3.17, 0.54 ≤ x5 ≤ 1.64,
2.12 ≤ x3 ≤ 9.23, 0.61 ≤ x6 ≤ 1.72.

(4)

In the particular case of the applied Problem (P), we should consider Prob-

lem (Pf ) with one ratio, where
n∑
i=1

ψi(xi) is the numerator and 〈e, x〉 =
6∑
i=1

xi is

the denominator of the fraction. Thus, auxiliary Problem (Pα) is formulated as
follows

6∑
i=1

ψi(xi)− α
6∑
i=1

xi ↓ min
x
, x ∈ Π, (5)
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where α ∈ IR+ is the parameter.
In addition, Problem (Pc) is formulated as follows

α ↓ min
(x,α)

, x ∈ Π,

6∑
i=1

ψi(xi)− α
6∑
i=1

xi ≤ 0, (6)

where α ∈ IR+ is the auxiliary variable.
Further, in order to solve problems (5) and (6), we need an explicit d.c. repre-

sentation of the nonconvex functions (1) and the nonconvex term α
6∑
i=1

xi = 〈αe, x〉

from (6), where e = (1, . . . , 1) ∈ IR6. We use the following clear formulas for the
d.c. representation of nonconvex terms x3i , −x3i and 〈αe, x〉:

x3i = 0.25[(xi + 1)4 − 4xi − 1]− 0.25(x4i + 6x2i ) = p(1)(xi)− q(1)(xi);
−x3i = 0.25(x4i + 6x2i + 4xi + 1)− 0.25(xi + 1)4 = p(2)(xi)− q(2)(xi);
〈αe, x〉 = 0.25 ‖ αe− x ‖2 −0.25 ‖ αe+ x ‖2= p(3)(x)− q(3)(x).

Next, we can construct the d.c. functions as follows

ψi(xi) = gi(xi)− hi(xi), i = 1, . . . , 6,

where

gi(xi) = aip
(1)(xi) + cixi + di, hi(xi) = aiq

(1)(xi)− bix2i , i = 1, 2, 3;
gi(xi) = −aip(2)(xi) + bix

2
i + cixi + di, hi(xi) = −aiq(2)(xi), i = 4, 5, 6.

As a result, the goal function for Problem (5) has the form

6∑
i=1

ψi(xi)− α
6∑
i=1

xi = Gα(x)−Hα(x),

where G(x) =
6∑
i=1

gi(xi) − α
6∑
i=1

xi, H(x) =
6∑
i=1

hi(xi), and the constraint for

Problem (6) has the form

6∑
i=1

ψi(xi)− α
6∑
i=1

xi = Gc(x, α)−Hc(x, α) ≤ 0,

where Gc(x, α) =
6∑
i=1

gi(xi) + q(3)(x), Hc(x, α) =
6∑
i=1

hi(xi) + p(3)(x).

Further, according to the two-component algorithm from Sect. 2, we should
implement the local search method from [12] to find a critical point in the d.c.
constraints Problem (Pc). As it is known, it consists of applying a classical idea
of linearization with respect to the basic nonconvexity of Problem (Pc) (i.e. lin-
earization of (6) with respect to Hc(x, α)) at the point (xs, αs). Thus, we obtain
the following linearized problem:

α ↓ min
(x,α)

, x ∈ Π, α ∈ IR+,

Gc(x, α)− 〈∇Hc(x
s, αs), (x, α)− (xs, αs)〉 −Hc(x

s, αs) ≤ 0.

}
(7)
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It is easy to see that the local search algorithm constructed in this way provides
critical points by employing only tools of the convex analysis.

Next, in Step 3 of the two-component algorithm for solving the fraction pro-
gram (P), we should find a solution z(αk) to Problem (Pαk) using the global
search strategy for d.c. minimization [26], i.e. we should implement a procedure
of escaping from the critical point found by the local search.

If the stopping criterion is satisfied, then the algorithm has found the solution
to Problem (P). Otherwise, we should implement the αk-bisection algorithm to
find the new parameter αk+1.

The solutions to Problem (P) representing optimal quantity of electricity found
by the two-component algorithm are x∗1 = 1.031, x∗2 = 3.082, x∗3 = 2.120, x∗4 =
20.560, x∗5 = 0.540, x∗6 = 0.610, respectively.

The cost functions ψ1(x∗1) = 1.249860003, ψ2(x∗2) = 1.926867122, ψ3(x∗3) =
2.868939252, ψ4(x∗4) = 26.6120213, ψ5(x∗5) = 0.725614296, ψ6(x∗6) = 0.917711245
correspond to the power companies TPS2, Darkhan, TPS3, TPS4, Erdenet, and
Salkhit, resptectively. The minimum total average cost is f(x∗) = 1.227535.

The optimal solutions show that in order to minimize the total average cost,
the power companies do not necessarily have to produce their products at the
maximum level but it is sufficient to produce at levels x∗1, . . . , x

∗
6.

4. CONCLUSIONS

We formulated the average cost minimization problem for power companies
of Mongolia as a fractional program. Based on the global optimality conditions
for d.c. programming, we proposed a two-component algorithm for solving this
problem. The algorithm can be applied to solving a general fractional program.
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