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Abstract: When the control charts for the ratio of two Poisson distributions need to
be constructed, a situation may require controlling the ratio rather than a single parame-
ter. Chakraborty and Khurshid [6] constructed Shewhart control chart and Chakraborty
and Khurshid [7] studied measurement error effect on control chart for the ratio of two
Poisson distributions, respectively. The effects of misclassification on the performance
of control charts have been investigated by several authors. Measurement error vari-
ability has uncertainty that can arise from several sources. In this paper, we study the
effect of the two sources of variability on the power characteristics of control chart under
misclassification error for the ratio of two Poisson distributions as studied by Sahai and
Khurshid [36]. Probabilities of misclassification of conforming and non-conforming units
for grid of values are provided.
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1. INTRODUCTION

A control chart, a popular statistical tool, is widely used to monitor and/or
improve a process. For example, on a production assembly/line each item is in-
spected and classified as conforming or nonconforming to its predefined quality
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inspection. Due to measurement variation, conforming items can be rejected and
nonconforming items can be accepted. This is known as misclassification [2].

It is widely recognized that the measurement error often exists in practice and
may considerably affect the performance of control charts in some cases. Mea-
surement error variability has uncertainty which can be from several sources. Mis-
classification is a particular form of measurement error and misclassification error
is generally studied separately from measurement error, although there is clearly
much overlap [5]. There is abundant literature on the consequences of measure-
ment error on the actual performance of various control charts (see, e.g. [1, 3, 4, 7,
8, 9, 12, 16, 19, 22, 23, 24, 25, 26, 27, 29, 30, 31, 34, 37, 41, 42, 43, 44, 46, 47, 48]).

Misclassification is a common problem in quality control literature and consid-
erable amount of work has been done by various authors. However, the misclassi-
fication error effects on the control chart for the ratio of two Poisson distributions
are still not considered. When the control charts for the ratio of two Poisson
distributions need to be constructed, a situation may require controlling the ra-
tio rather than a single parameter. Chakraborty and Khurshid [6] constructed
Shewhart control chart, and Chakraborty and Khurshid [7] studied measurement
error effect on control chart for the ratio of two Poisson distributions, respectively.
In a recent article, Yamauchi and Ho [45], compared Shewhart and exponentially
weighted moving average cntrol charts for the ratio of two Poisson rates.

The purpose of this paper is to calculate the power of control chart for the ratio
of two Poisson distributions as studied by Sahai and Khurshid [36] by considering
approximate expression for calculating the probabilities of errors of misclassifica-
tion due to measurement error.

2. RATIO OF TWO POISSON DISTRIBUTIONS

The problem of making inferences on the ratio of two Poisson parameters from
corresponding independent Poisson distributions arises in many scientific investi-
gations and scenarios. It has drawn considerable interest not only in the field of
statistics [33, 36] but also in numerous fields like the number of automobile acci-
dent deaths on roads before and after a safety training program [40], the number
of leukemia event rate per year in a pre and post nuclear accident period [13]. In
a breast cancer study [15, 35] two groups of women were compared to ascertain
whether those who had been inspected using X-ray fluoroscopy during treatment
for tuberculosis had a higher rate of breast cancer than those who had not been
inspected using X-ray fluoroscopy. [10] considered the ratio of ion-counting signals
in isotope where the distribution of ion-counts follows two independent Poisson
distributions. Its application also includes (i) the evaluation of machines break
downs over time; (ii) number of defective items from two different suppliers; (iii)
the ratio of bacteria growing on two culture plates with different areas.

It is noteworthy that the ratio of two Poisson variables does not follow a Poisson
distribution, instead it can be represented by the binomial distribution and can be
appreciated in the following way: The production of items from a machine can be
viewed as a collection of n independent Bernoulli trials with each unit being either
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defective a or non-defective b. The probability of selecting a defective items at any
particular trial is a/(a + b). Thus, the number of defective items in the sample
follows a binomial distribution with parameters n and a/(a+ b). Let X and Y be
two independent Poisson random variables with parameters a and b, respectively.
The conditional distribution of X, given X+Y = n, follows a binomial distribution
of the form [18, 21]

P [X = d|(X + Y = n)] =

(
n
d

)(
a

a+ b

)d(
b

a+ b

)n−d
; d = 0, 1, 2, . . . , n (1)

The mean and variance of the above function are

µ = E(X) =
na

a+ b
, (2)

and

σ2 = V ar(X) =
nab

(a+ b)2
. (3)

3. ASSUMPTIONS

Our assumptions can be summarized as follows:
The quality characteristic x is normally distributed with mean µ and standard
deviation σp; thus

f(x)dx =
1

σp
√

2π
exp

[
−1

2

(
x− µ
σp

)2
]
dx. (4)

The variable v, denoting measurement error, is also normal with mean x and
standard deviation σe

f(v)dv =
1

σe
√

2π
exp

[
−1

2

(
v − x
σe

)2
]
dv. (5)

The units beyond x = µ ±Kσp are defective, and the units within x = µ ±Kσp
are non-defective.

It is also assumed that the measurements have been taken only to classify the
production items into acceptable and rejectable units with certain specifications
that can be expressed in terms of mean and standard deviation of the measurable
quality characteristics.

Notation
TFD (true fraction defective) is the proportion of defective items when there is
no error of misclassification and is denoted by P ;
AFD (apparent fraction defective) is the proportion of defective items if error of
misclassification is present, and is denoted by π;
AFD = TFD, if the misclassification error is zero.
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4. EVALUATING PROBABILITIES OF MISCLASSIFICATION

In a production assembly/line each item is inspected and classified as con-
forming or nonconforming to its predefined quality inspection, which under ideal
conditions has no errors. One important way of judging the performance of any
classification procedure is to calculate its error (type I and type II) rate or mis-
classification probabilities. In this background, a type I error occurs when an item
that is good is misclassified as a nonconforming, whereas a type II error occurs
when a defective item is misclassified as conforming. Let P1 and P2 be the type I
and type II error probabilities respectively, and take the values between 0 and 1,
then following [38], with the above mentioned assumptions (Section 3), P1 and P2

can be evaluated as

P1 =

∫ Kσp

−Kσp
f(x)dx[1−

∫ Kσp

−Kσp
f(v)dv] (6)

and

P2 =

∫ ∞
Kσp

f(x)dx

∫ Kσp

−Kσp
f(v)dv +

∫ −Kσp
−∞

f(x)dx

∫ Kσp

−Kσp
f(v)dv. (7)

Singh [38] studied measurement error in acceptance sampling plan and calculated
P1 and P2 based on the graphic representation of the probabilities of misclassi-
fication data for different values of K and a = σe/σp. Singh [38] approximated
expressions for P1 and P2 as:

P1 = 2T (h, a) + {Φ(k)− Φ(h)} (8)

and

P2 = 2T (h, a)− {Φ(k)− Φ(h)} (9)

where
a = σe

σp
, h =

Kσp√
σ2
e+σ

2
p

, Φ(x) = 1√
2π

∫ x
−∞ exp

[
− 1

2v
2
]
dv and

T (h, a) = 1√
2π

∫ a
0

exp[− 1
2h

2(1+x2)]
1+x2 dx.

Here, 1.5 ≤ K ≤ 3 and (σe/σp) ≤ 0.5 hold good for finding P1 and P2. Now if
P denotes the incoming true fraction defective of the lots then the expression of
AFD, following Lavin [20] is denoted by

π = P (1− P2) + P1(1− P ). (10)

Here π yields a random variable X whose binomial distribution has parameter π
instead of P . For published material based on Lavin equation, see [11, 14, 17, 28].
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5. POWER OF CONTROL CHART FOR RATIO OF TWO
POISSON DISTRIBUTIONS UNDER MISCLASSIFICATION

Kanazuka [19] has shown that the power of detecting the change of process
parameter for the control chart can be found

Pd = P{X ≥ UCL}+ P{X ≤ LCL}

where UCL and LCL are upper and lower control limits respectively. Hence,
following Equation 1, we have

Pd =

[
1−

UCL−1∑
d=0

(
n
d

)(
a

a+ b

)d(
b

a+ b

)n−d]
+

[
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(
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)(
a
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)d(
b
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)n−d]
.

(11)

Let P =
(

a
a+b

)
denotes the incoming true function defective of the lots, then from

Equation 10, the apparent fraction defective is given by

π =

(
a

a+ b

)
(1− P2) + P1

(
1− a

a+ b

)
. (12)

Thus under misclassification, the control limits (UCL and LCL) are π±K
√

π(1−π)
n

and center line (CL) is π. Hence, the power of the control chart under misclassi-
fication is

Pd =

[
1−

UCL−1∑
de=0

(
n
de

)
πde(1− π)n−de

]
+

[
LCL∑
de=0

(
n
de

)
πde(1− π)n−de

]
, (13)

where de is the number of apparent fraction defectives observed by the inspectors.

For our calculations here, we have kept
(

a
a+b

)
= p = p̄ = 0.2 , the overall

sample proportion of defective fixed and the values of n being changed in different
situations to see the effect of the size of the sample on the power of control chart.

6. CALCULATIONS AND CONCLUSIONS

To obtain the power of control chart (Pd) and operating characteristic (OC)
curve (Pe(π)) under misclassification error, first we have to find π = P (1− P2) +
P1(1−P ) based on the approximate expressions for P1 and P2 (Equations 8 and 9).

Tables 1, 2, and 3 give the values of h = K√
a2+1

for different combinations of

a = σe/σp and T (h, a). Here we have used Monte Carlo simulation to find T (h, a).
True values of fraction defective P can be obtained from the normal probability
table for different values of K. The values of P1 and P2 for different combinations
of T (h, a) and Φ(h) for fixed K have been tabulated in Tables 1, 2, and 3. It has
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been observed from these tables that for fixed K, the values of P1 and P2 show
a decreasing trend if the measurement error a = σe/σp decreases. On the other
hand, we also observe that for fixed a = σe/σp the values of P1 is greater than P2

and when h ∼= K, then P1 = P2.
The relationship between apparent fraction defective (AFD) and true fraction

defective (TFD) is shown in Table 4. It is observed that for fixed K and a =
σe/σp as the values of the true fraction defective (P ) increase, the values of π i.e.,
apparent (observed) fraction defective also increase and also for fixed P , as the
values of measurement error a = σe/σp increase, there is considerable increase in
the values of π.

Table 5 depicts the effect ofK on probabilities of misclassification of conforming
units (P1) and non-conforming units (P2). For fixed a = σe/σp, if we increase the
values of K, there is a decreasing trend for P1 but for fixed K, the values of P1

increase as a = σe/σp is increased.
Tables 6 and 7 offer us the idea how the values of AFD (π) influence the control

limits for fraction defective charts. It has been observed from the tables that for
fixed K, the values of both UCL and LCL increase as there is an increase in the
values of a = σe/σp. For fixed a = σe/σp, the difference between UCL and LCL
increases as we go on increasing K when the corresponding values of π decrease
(which depends on P1, P2 and P ). It is observed that the range of UCL and LCL
is less when the size of the sample is increased.

Tables 6 and 7 show the different values of power of control chart (Pd) for the
corresponding values of π. Here we observe how power curve (Pd) changes for
different values of n, K, a = σe/σp, UCL and LCL. From Table 6 it is observed
that values of Pd go on decreasing as we increase K (K = 1.5 to K = 3) for fixed
a = σe/σp and P1 = P2. Also, no change in the values of Pd being observed if
there is marginal increase in the values of a = σe/σp for fixed n and fixed K.
But if we increase the size of the sample (Column 2 of Table 7) for fixed K and
P1 = P2, there is a change in the values of Pd. The values of the power (Pd) is less
if the size of the sample is larger for fixed a = σe/σp. It is also understood from
Table 7, that the values of the power (Pd) is higher, if n increased along with the
value of a = σe/σp.
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When K = 1.5 and Φ(K) = 0.9332
a = σe/σp h = K√

a2+1
T (h, a) Φ(h) P1 P2

0.50 1.34 0.07039360 0.9099 0.16408720 0.11748720
0.40 1.39 0.05503907 0.9177 0.12557814 0.09457814
0.30 1.44 0.04001047 0.9251 0.08812094 0.07192094
0.25 1.46 0.03294319 0.9279 0.07118638 0.06058638
0.20 1.47 0.02635462 0.9292 0.05670924 0.04870924
0.15 1.48 0.01970635 0.9306 0.04201270 0.03681270
0.10 1.49 0.01305494 0.9319 0.02740988 0.02480988
0.05 1.50 0.00646451 0.9332 0.01292902 0.01292902

Table 1: Values of T (h, a) = 1√
2π

∫ a
0

exp[− 1
2
h2(1+x2)]

1+x2
dx, Φ(h), P1 = 2T (h, a) + {Φ(k) − Φ(h)}

and P2 = 2T (h, a)− {Φ(k)− Φ(h)}.

The function T (h, a) has been tabulated by [32, 39]. Interested readers may obtain a simple
QBASIC program from the first author.

When K = 1.75 and Φ(K) = 0.9599
a = σe/σp h = K√

a2+1
T (h, a) Φ(h) P1 P2

0.50 1.57 0.04915861 0.9418 0.11641722 0.08021722
0.40 1.63 0.03763664 0.9484 0.08677328 0.06377328
0.30 1.68 0.02722368 0.9535 0.06084736 0.04804736
0.25 1.70 0.02237561 0.9554 0.04925122 0.04025122
0.20 1.72 0.01759671 0.9573 0.03779342 0.03259342
0.15 1.73 0.01315372 0.9582 0.02800744 0.02460744
0.10 1.74 0.008706727 0.9591 0.018213454 0.016613454
0.05 1.75 0.004304809 0.9599 0.008609618 0.008609618

Table 2: Values of T (h, a) = 1√
2π

∫ a
0

exp[− 1
2
h2(1+x2)]

1+x2
dx, Φ(h), P1 = 2T (h, a) + {Φ(k) − Φ(h)}

and P2 = 2T (h, a)− {Φ(k)− Φ(h)}.

When K = 2.0 and Φ(K) = 0.9772
a = σe/σp h = K√

a2+1
T (h, a) Φ(h) P1 P2

0.50 1.79 0.03308721 0.9633 0.08007442 0.05227442
0.40 1.86 0.02471443 0.9686 0.05802886 0.04082886
0.30 1.92 0.01745997 0.9726 0.03951994 0.03031994
0.25 1.94 0.01433163 0.9738 0.03206326 0.02526326
0.20 1.96 0.01125022 0.9750 0.02470044 0.02030044
0.15 1.98 0.008244447 0.9761 0.017588894 0.015388894
0.10 1.99 0.00545368 0.9767 0.0114073 0.01040736
0.05 2.00 0.002692772 0.9772 0.005385544 0.005385544

Table 3: Values of T (h, a) = 1√
2π

∫ a
0

exp[− 1
2
h2(1+x2)]

1+x2
dx, Φ(h), P1 = 2T (h, a) + {Φ(k) − Φ(h)}

and P2 = 2T (h, a)− {Φ(k)− Φ(h)}.
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P π
a = σe/σp = 0.05 a = σe/σp = 0.10 a = σe/σp = 0.15

0 0.005385 0.011407 0.017589
0.01 0.015280 0.021119 0.027259
0.02 0.025170 0.030971 0.036929
0.03 0.035116 0.040753 0.046600
0.04 0.044955 0.050535 0.056270
0.05 0.054846 0.060317 0.065940

Table 4: Relationship between TFD(= P ) and AFD(= π) for different values of a = σe/σp
when K = 2.0.

K a = 0.10 a = 0.15 a = 0.20
P1 P2 P1 P2 P1 P2

1.50 0.027409880 0.024809880 0.042012700 0.036812700 0.056709240 0.048709240
1.75 0.018213454 0.016613454 0.028007440 0.024607440 0.037793420 0.032593420
2.00 0.011407360 0.010407360 0.017588894 0.015388894 0.024700440 0.020300440
2.25 0.006716798 0.006116798 0.010404278 0.009004278 0.015270486 0.011870486
2.50 0.003745750 0.003345750 0.005762864 0.004962864 0.008432314 0.006632314
2.75 0.001940131 0.001740131 0.003160336 0.002560336 0.004424558 0.003424558
3.00 0.000996947 0.000796947 0.001597271 0.001197271 0.002277630 0.001677630

Table 5: Probabilities of misclassification of conforming units (P1) and nonconforming units (P2)
for different values of K and a = σe/σp.

Pd
π K = 1.5, P1 = P2 = 0.013, K = 2, P1 = P2 = 0.005, K = 3, P1 = P2 = 0.00044,

CL = 3.1, UCL = 5, LCL = 1 CL = 3, UCL = 5, LCL = 0 CL = 3.005, UCL = 7, LCL = 0
0.01 0.9904 0.8601 0.8601
0.02 0.9674 0.7386 0.7386
0.04 0.8811 0.5421 0.5421
0.05 0.8296 0.4634 0.4633
0.07 0.7196 0.3370 0.3367
0.09 0.6117 0.2443 0.2432
0.10 0.5617 0.2081 0.2062
0.15 0.3354 0.1042 0.0910
0.20 0.3313 0.0963 0.0533
0.25 0.3937 0.1618 0.0700
0.35 0.6623 0.4373 0.2468
0.45 0.8813 0.7393 0.5479
0.50 0.9413 0.8491 0.6964
0.65 0.9972 0.9876 0.9578
0.75 0.9999 0.9992 0.9958

Table 6: Power of control chart for the ratio of two Poisson under misclassification due to
measurement error (a = σe/σp = 0.05, p = p̄ = 0.2, n = 15).

Pd
π K = 1.5, P1 = P2 = 0.013, K = 1.5, P1 = 0.164, P2 = 0.1175, K = 3, P1 = 0.010, P2 = 0.005,

CL = 4.16, UCL = 7, LCL = 1 CL = 6.16, UCL = 9, LCL = 3 CL = 4, UCL = 9, LCL = 0
0.01 0.9831 1.0000 0.8179
0.02 0.9401 0.9994 0.6676
0.04 0.8103 0.9926 0.4420
0.05 0.7358 0.9841 0.3585
0.10 0.3941 0.8671 0.1217
0.20 0.1559 0.4214 0.0215
0.25 0.2385 0.2661 0.0441
0.35 0.5855 0.2820 0.2378
0.40 0.7505 0.4204 0.4044
0.45 0.8702 0.5906 0.5857
0.50 0.9432 0.7496 0.7483
0.65 0.9887 0.9804 0.9804

Table 7: Power of control chart for the ratio of two Poisson under misclassification due to
measurement error (a = σe/σp = 0.05, p = p̄ = 0.2, n = 20).


