Yugoslav Journal of Operations Research 29 (2019), Number 3, 325–335 DOI: https://doi.org/10.2298/YJOR180515002S

DETERMINING FUZZY DISTANCE THROUGH NON-SELF FUZZY CONTRACTIONS

Parbati SAHA

Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103, India parbati_ saha@yahoo.co.in

Shantanu GURIA

Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103, India sguria.math@gmail.com

Binayak S. CHOUDHURY Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103, India binayak12@yahoo.co.in

Received: May 2018 / Accepted: December 2018

Abstract: In the present work we solve the problem of finding the fuzzy distance between two subsets of a fuzzy metric space for which we use a non-self fuzzy contraction mapping from one set to the other. It is a fuzzy extension of the proximity point problem which is by its nature a problem of global optimization. The contraction is defined here by two control functions. We define a geometric property of the fuzzy metric space. The main result is illustrated with an example. Our result extends a fuzzy version of the Banach contraction mapping principle.

Keywords: Fuzzy Metric Spaces, Global Optimization, Pproximity Point, Non-Self $(\phi - \psi)$ - Proximal Contraction, Optimal Approximate Solution, Fuzzy P-property. **MSC:** 47H10, 54H25.

1. INTRODUCTION

In this paper we establish a proximity point result in a fuzzy metric space so to find the fuzzy distance between two subsets. The problem originated from the work of Eldred et al [9] and has been well studied during the decade through works like [2, 5, 9, 15, 14, 16, 21, 22]. For our purpose we use a non-self contraction mapping which is defined by two control functions. The fuzzy metric space on which we deduce our results is as in George et al [10]. Due to its special features, it has become the platform of several extensions of metric related studies [1, 3, 4, 6, 7, 11, 12, 13, 19]. The problem sought to be considered here is essentially a global optimization problem which is solved by transforming it to a problem of finding the optimal approximate solution to a fixed point equation for a non-self contraction defined by use of two control functions. Control functions have been used in several fixed point problems in metric spaces [20]. Here, as the contraction function is non-self mapping, there is no exact solution of the fixed point equation. The following are two special features of the present work.

We define and use a non-self contraction with two control functions.
 We define and use a geometric property in the fuzzy metric space.

2. MATHEMATICAL PRELIMINARIES

George and Veeramani in their paper [10] introduced the following definition of fuzzy metric space. Throughout this paper, we use this definition of fuzzy metric space.

Definition 1. [10] The 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary non-empty set, M is a fuzzy set on $X^2 \times (0, \infty)$ satisfying the following conditions for each $x, y, z \in X$ and t, s > 0:

- () M(x, y, t) > 0,
- () M(x, y, t) = 1 if and only if x = y,
- () M(x, y, t) = M(y, x, t),
- () $M(x, y, t) * M(y, z, s) \le M(x, z, t + s)$ and
- () $M(x, y, .) : (0, \infty) \longrightarrow (0, 1]$ is continuous,

where * is a continuous t-norm, that is, a continuous function $*:[0,1]^2\longrightarrow [0,1]$ such that

(i) a * b = b * a for all $a, b \in [0, 1]$,

(*ii*) a * (b * c) = (a * b) * c for all $a, b, c \in [0, 1]$,

(*iii*) a * 1 = a for all $a \in [0, 1]$,

(iv) $a * b \le c * d$ whenever $a \le c$ and $b \le d$, for each $a, b, c, d \in [0, 1]$.

Let (X, M, *) be a fuzzy metric space. For t > 0 and r with 0 < r < 1, the open ball B(x, t, r) with center $x \in X$ is defined by

$$B(x,t,r) = \{y \in X : M(x,y,t) > 1-r\}.$$

A subset $A \subset X$ is called open if for each $x \in A$, there exist t > 0 and r with 0 < r < 1 such that $B(x,t,r) \subset A$. Let τ denote the family of all open subsets of X. Then τ is a topology and is called the topology on X induced by the fuzzy metric M. The topology τ is a Hausdorff topology [10]. In fact, the definition 2.1 is a modification of the definition given in [17] for ensuring Hausdorff topology of the space.

Definition 2. [10] Let (X, M, *) be a fuzzy metric space. A sequence $\{x_n\}$ in X is said to be convergent to a point $x \in X$ if $\lim_{n \to \infty} M(x_n, x, t) = 1$ for all t > 0.

Definition 3. [10] Let (X, M, *) be a fuzzy metric space. A sequence $\{x_n\}$ in X is called a Cauchy sequence if for each ε with $0 < \varepsilon < 1$ and t > 0, there exists a positive integer n_0 such that $M(x_n, x_m, t) > 1 - \varepsilon$ for each $n, m \ge n_0$.

A fuzzy metric space is said to be complete if every Cauchy sequence is convergent in it.

The following lemma was proved by Grabiec [11] for fuzzy metric spaces defined by Kramosil et al [17]. The proof is also applicable to the fuzzy metric space given in definition 2.1.

Lemma 4. [11] Let (X, M, *) be a fuzzy metric space. Then M(x, y, .) is nondecreasing for all $x, y \in X$.

Lemma 5. [18] M is a continuous function on $X^2 \times (0, \infty)$.

We will require for use in our results the following two functions.

Definition 6. $(\Psi$ -function)[23] A function $\psi : [0, \infty) \to [0, \infty)$ is a Ψ -function if

() ψ is nondecreasing and continuous,

() $\sum_{n=1}^{\infty} \psi^n(t) < \infty$ for all t > 0, where $\psi^{n+1}(t) = \psi(\psi^n(t)), n \ge 1$.

It is clear that $\psi(t) < t$ for all t > 0 whenever ψ is a Ψ -function.

The following function is an example of a ψ - function:

$$\psi(t) = \begin{cases} t - \frac{t^2}{2}, & \text{if } t \in [0, 1], \\ \frac{1}{2}, & t > 1. \end{cases}$$

Definition 7. [20] A function $\phi : [0, \infty) \to [0, \infty)$ is a Φ -function if (i) ϕ is nondecreasing and continuous, (ii) $\phi(0) = 0$.

Lemma 8. [23] If * is a continuous t-norm, and $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ are sequences such that $\alpha_n \to \alpha$, $\gamma_n \to \gamma$ as $n \to \infty$, then $\lim_{k \to \infty} (\alpha_k * \beta_k * \gamma_k) =$

 $\begin{array}{l} \alpha * \varlimsup_{k \to \infty} \beta_k * \gamma \ and \\ \varinjlim_{k \to \infty} (\alpha_k * \beta_k * \gamma_n) = \alpha * \varinjlim_{k \to \infty} \beta_k * \gamma. \end{array}$

Lemma 9. [23] Let $\{f(k,.) : [0,\infty) \to [0,1], k = 0,1,2,\dots\}$ be a sequence of functions such that f(k,.) is continuous and monotone increasing for each $k \ge 0$. Then $\lim_{k\to\infty} f(k,t)$ is a left continuous function in t and $\lim_{k\to\infty} f(k,t)$ is a right continuous function in t.

3. MAIN RESULTS

Definition 10. [24] Let (X, M, *) be a fuzzy metric space. The fuzzy distance of a point $x \in X$ from a nonempty subset A of X is $M(x \land t) = \sup M(x \land t) \text{ for all } t > 0$

$$M(x, A, t) = \sup_{a \in A} M(x, a, t)$$
 for all $t > 0$

and the fuzzy distance between two nonempty subsets A and B of X is $M(A, B, t) = \sup\{M(a, b, t) : a \in A, b \in B\}$ for all t > 0.

Let A and B be two nonempty disjoint subsets of a fuzzy metric space (X, M, *). We write

 $A_0 = \{x \in A : \exists y \in B \text{ such that } M(x, y, t) = M(A, B, t) \text{ for all } t > 0\},$ $B_0 = \{y \in B : \exists x \in A \text{ such that } M(x, y, t) = M(A, B, t) \text{ for all } t > 0\}.$

Definition 11. Let (X, M, *) be a fuzzy metric space and A, B are two non-empty subsets of X. An element $x^* \in A$ is defined as a fuzzy best proximity point of the mapping $f : A \to B$ if it satisfies the condition that for all t > 0 $M(x^*, fx^*, t) = M(A, B, t).$

In the following we define a property of a pair of subsets in a fuzzy metric space. It is essentially a geometric property.

Definition 12. Let (A, B) be a pair of nonempty disjoint subsets of a fuzzy metric space (X, M, *). Then the pair (A, B) is said to satisfy the fuzzy P-property if for all t > 0 and $x_1, x_2 \in A$, $y_1, y_2 \in B$, M(x, y, t) = M(A, B, t) and M(x, y, t) = M(A, B, t)

 $M(x_1, y_1, t) = M(A, B, t)$ and $M(x_2, y_2, t) = M(A, B, t)$ jointly implies that $M(x_1, x_2, t) = M(y_1, y_2, t).$

The P-property is a geometric property which is automatically valid in Hilbert spaces for non- empty closed and convex pairs of sets [21], but does not hold in arbitrary Banach spaces. In metric spaces such property for pairs of subsets is separately assumed for specific purposes. The above definition is a fuzzy extension of that.

Definition 13. Let (X, M, *) be a fuzzy metric space and $f : A \to B$ be a mapping. The mapping f is non-self $(\phi - \psi)$ - contraction mapping if there exist Ψ -function (definition 6) ψ , a Φ -function (definition 7) ϕ and 0 < c < 1 such that for all t > 0 and $x, y \in A$ we have

$$\left(\frac{1}{M(fx, fy, \phi(ct))} - 1\right) \le \psi\left(\frac{1}{M(x, y, \phi(t))} - 1\right).$$
(3.1)

Note. The above contraction condition with some variations in the condition on ψ has already appeared in the context of fixed point studies in probabilistic metric spaces [8].

Theorem 14. Let (X, M, *) be a complete fuzzy metric space. Let A and B be two closed subsets of X and $f : A \to B$ be an $(\phi - \psi)$ – contractive mapping such that the following conditions are satisfied.

(i) (A, B) satisfies the fuzzy P-property,

(*ii*) $f(A_0) \subseteq B_0$,

(iii) A_0 is nonempty,

Then there exists an element $x^* \in A$ which is a fuzzy best proximity point of f. **Proof.** By assumption (iii), A_0 is nonempty. Let $x_0 \in A_0$. Since $f(A_0) \subseteq B_0$, there exists $x_1 \in A_0$ such that

 $M(x_1, fx_0, t) = M(A, B, t)$ for all t > 0. Again since $f(A_0) \subseteq B_0$, there exists $x_2 \in A_0$ such that

 $M(x_2, fx_1, t) = M(A, B, t) \text{ for all } t > 0.$

Continuing this process, we construct a sequence $\{x_n\}$ in A_0 such that for all $n \ge 1$, for all t > 0,

$$M(x_n, fx_{n-1}, t) = M(A, B, t).$$
(3.2)

Also, we can write the above as

$$M(x_{n+1}, fx_n, t) = M(A, B, t) \text{ for all } n \ge 1, \text{ for all } t > 0.$$
(3.3)

Since (A, B) satisfies the fuzzy P-property, we get from (3.2) and (3.3), for all t > 0

$$M(x_n, x_{n+1}, t) = M(fx_{n-1}, fx_n, t) \text{ for all } n > 1.$$
(3.4)

From the property of ϕ it is clear that for each t > 0 there exists $t_0 > 0$ such that $\phi(t_0) = t$.

Since f is $(\phi - \psi)$ - contraction and from the property of ϕ , we have for all $n \ge 1$, for all t > 0 there exist $t_0 > 0$ such that

$$\left(\frac{1}{M(fx_{n-1}, fx_n, t)} - 1\right) = \left(\frac{1}{M(fx_{n-1}, fx_n, \phi(t_0))} - 1\right)$$
$$\leq \left(\frac{1}{M(fx_{n-1}, fx_n, \phi(ct_0))} - 1\right)$$
$$\leq \psi\left(\frac{1}{M(x_{n-1}, x_n, \phi(t_0))} - 1\right)$$
$$= \psi\left(\frac{1}{M(x_{n-1}, x_n, t)} - 1\right)$$

Therefore, we have for all $n \ge 1$, for all t > 0,

$$\left(\frac{1}{M(fx_{n-1}, fx_n, t)} - 1\right) \le \psi\left(\frac{1}{M(x_{n-1}, x_n, t)} - 1\right).$$
(3.5)

Combining (3.4) and (3.5), we have for all $n \ge 1$, for all t > 0,

$$\left(\frac{1}{M(x_n, x_{n+1}, t)} - 1\right) \le \psi\left(\frac{1}{M(x_{n-1}, x_n, t)} - 1\right).$$
(3.6)

If for some k > 0, $x_k = x_{k+1}$, then x_k is a best proximity point of f. Assuming $x_{n-1} \neq x_n$ for all $n \geq 1$, and making repeated applications of (3.6), we have for all $n \geq 1$, for all t > 0,

$$\left(\frac{1}{M(x_n, x_{n+1}, t)} - 1\right) \le \psi^n \left(\frac{1}{M(x_0, x_1, t)} - 1\right).$$
(3.7)

Taking $n \to \infty$ in the above inequality (3.7), for all t > 0, we obtain $\lim_{n \to \infty} \left(\frac{1}{M(x_n, x_{n+1}, t)} - 1\right) \le \lim_{n \to \infty} \psi^n \left(\frac{1}{M(x_0, x_1, t)} - 1\right) \to 0 \text{ as } n \to \infty, \text{ (by a property of } \psi\text{).}$

that is, $\lim_{n \to \infty} \left(\frac{1}{M(x_n, x_{n+1}, t)} - 1 \right) = 0$, which implies that for all t > 0,

$$\lim_{n \to \infty} M(x_n, x_{n+1}, t) = 1.$$
(3.8)

Next, we show that $\{x_n\}$ is a Cauchy sequence in A. We suppose, if possible, that $\{x_n\}$ is not a Cauchy sequence in A. Then definition 3 is not satisfied by the sequence $\{x_n\}$ and, therefore, there exist some $\epsilon > 0$ and some λ with $0 < \lambda < 1$, for which we can find two subsequences $\{x_{m(k)}\}\$ and $\{x_{n(k)}\}\$ of $\{x_n\}\$ with n(k) > m(k) > k such that

$$M(x_{m(k)}, x_{n(k)}, \epsilon) \le (1 - \lambda), \tag{3.9}$$

for all positive integer k.

We may choose the n(k) as the smallest integer exceeding m(k) for which (3.9) holds. Then, for all positive integer k,

$$M(x_{m(k)}, x_{n(k)-1}, \epsilon) > (1 - \lambda)$$
(3.10)

Then, for all $k \ge 1, 0 < s < \frac{\epsilon}{2}$, we obtain,

$$\begin{array}{rcl} (1-\lambda) & \geq & M(x_{m(k)}, x_{n(k)}, \epsilon) \\ & \geq & M(x_{m(k)}, x_{m(k)-1}, s) * M(x_{m(k)-1}, x_{n(k)-1}, \epsilon - 2s) \\ & * & M(x_{n(k)-1}, x_{n(k)}, s). \end{array}$$

$$(3.11)$$

For all t > 0, we denote

$$h_1(t) = \overline{\lim_{k \to \infty}} M(x_{m(k)-1}, x_{n(k)-1}, t).$$
(3.12)

Taking limit supremum on both sides of (3.11), using (3.8), the properties of M and *, by lemma (8), we obtain

$$(1-\lambda) \ge 1 * \overline{\lim_{k \to \infty}} M(x_{m(k)-1}, x_{n(k)-1}, \epsilon - 2s) * 1 = h_1(\epsilon - 2s)$$
(3.13)

Since M is bounded within the range in [0,1], continuous and, by lemma 4, monotone increasing in the third variable t, it follows by an application of lemma 9 that h_1 , as given in (3.12) is continuous from the left. From the above, letting $s \to 0$ in (3.13), it then follows that

$$\overline{\lim_{k \to \infty}} M(x_{m(k)-1}, x_{n(k)-1}, \epsilon) \le (1-\lambda).$$
(3.14)

Let,

$$h_2(t) = \lim_{k \to \infty} M(x_{m(k)-1}, x_{n(k)-1}, t), t > 0.$$
(3.15)

Again, for all $k \ge 1, s > 0$,

$$\begin{aligned} M(x_{m(k)-1}, x_{n(k)-1}, \epsilon + s) &\geq & M(x_{m(k)-1}, x_{m(k)}, s) * M(x_{m(k)}, x_{n(k)-1}, \epsilon) \\ &\geq & M(x_{m(k)-1}, x_{m(k)}, s) * (1 - \lambda), (by(3.1G)). \end{aligned}$$

Taking limit infimum as $k \to \infty$ in (3.16), by virtue of (3.8), we obtain

$$h_{2}(\epsilon+s) = \lim_{k \to \infty} M(x_{m(k)-1}, x_{n(k)-1}, \epsilon+s) \ge \lim_{k \to \infty} M(x_{m(k)-1}, x_{m(k)}, s) * (1-\lambda)$$
$$= 1 * (1-\lambda) = (1-\lambda). \quad (3.17)$$

Since M is bounded within the range in [0,1], continuous and by lemma 4, it is monotone increasing in the third variable t, it follows by an application of lemma 9 that h_2 , as given in (3.15) is continuous from the right. From the above, letting $s \to 0$ in (3.17), it then follows that

$$\lim_{k \to \infty} M(x_{m(k)-1}, x_{n(k)-1}, \epsilon) \ge (1-\lambda).$$

$$(3.18)$$

The inequalities (3.14) and (3.18) jointly imply that

$$\lim_{k \to \infty} M(x_{m(k)-1}, x_{n(k)-1}, \epsilon) = (1 - \lambda).$$
(3.19)

P., Saha, et al. / Determining Fuzzy Distance

Again by (3.9),

$$\overline{\lim_{k \to \infty}} M(x_{m(k)}, x_{n(k)}, \epsilon) \le (1 - \lambda)$$
(3.20)

Also for all $k \ge 1, s > 0$, we obtain

 $M(x_{m(k)}, x_{n(k)}, \epsilon + 2s) \ge M(x_{m(k)}, x_{m(k)-1}, s) * M(x_{m(k)-1}, x_{n(k)-1}, \epsilon) * M(x_{n(k)-1}, x_{n(k)}, s)$ Taking limit infimum as $k \to \infty$ in the above inequality, using (3.8), (3.19) and the properties of M and *, by lemma 8, we obtain $\underbrace{\lim_{k \to \infty} M(x_{m(k)}, x_{n(k)}, \epsilon + 2s)}_{k \to \infty} \ge 1 * \underbrace{\lim_{k \to \infty} M(x_{m(k)-1}, x_{n(k)-1}, \epsilon)}_{k \to \infty} * 1 = 1 - \lambda.$ $k \to \infty$ Since M is bounded within the range in [0,1], is continuous and, by lemma 4, monotone increasing in the third variable t, it follows by an application of lemma 9 that $\lim M(x_{m(k)}, x_{n(k)}, t)$ is continuous function of t from the right. Taking $s \to 0$ in the above inequality, and using lemma 9, we obtain

$$\lim_{k \to \infty} M(x_{m(k)}, x_{n(k)}, \epsilon) \ge (1 - \lambda), \tag{3.21}$$

Combining (3.20) and (3.21), we obtain

$$\lim_{k \to \infty} M(x_{m(k)}, x_{n(k)}, \epsilon) = (1 - \lambda)$$
(3.22)

From (3.3), we have

$$M(x_{m(k)}, fx_{m(k)-1}, t) = M(A, B, t)$$
(3.23)

$$M(x_{n(k)}, fx_{n(k)-1}, t) = M(A, B, t)$$
(3.24)

Since (A, B) satisfies the fuzzy P-property, we get from (3.23) and (3.24), for all t > 0,

$$M(x_{m(k)}, x_{n(k)}, t) = M(fx_{m(k)-1}, fx_{n(k)-1}, t).$$
(3.25)

Now by the property of ϕ , there exists $\epsilon_0 > 0$ such that $\phi(\epsilon_0) = \epsilon$. Therefore, from the above and by (3.25),

$$\left(\frac{1}{M(x_{m(k)}, x_{n(k)}, \epsilon)} - 1\right) = \left(\frac{1}{M(fx_{m(k)-1}, fx_{n(k)-1}, \epsilon)} - 1\right)$$
$$= \left(\frac{1}{M(fx_{m(k)-1}, fx_{n(k)-1}, \phi(\epsilon_0))} - 1\right)$$
$$\leq \left(\frac{1}{M(fx_{m(k)-1}, fx_{n(k)-1}, \phi(\epsilon_0))} - 1\right)$$
$$\leq \psi\left(\frac{1}{M(x_{m(k)-1}, x_{n(k)-1}, \phi(\epsilon_0))} - 1\right)$$
$$= \psi\left(\frac{1}{M(x_{m(k)-1}, x_{n(k)-1}, \epsilon)} - 1\right)$$

 $\begin{array}{l} Taking \ k \to \infty \ in \ the \ above \ inequality, \ we \ have \\ (\frac{1}{\lim_{k \to \infty} M(x_{m(k)}, x_{n(k)}, \epsilon)} - 1) \le \psi(\frac{1}{\lim_{k \to \infty} M(x_{m(k)-1}, x_{n(k)-1}, \epsilon)} - 1). \ (since \ \psi \ is \ continuous) \\ Using \ (3.19) \ and \ (3.22), \ we \ have \\ (\frac{1}{1-\lambda} - 1) \le \psi(\frac{1}{1-\lambda} - 1) < (\frac{1}{1-\lambda} - 1), \\ which \ is \ a \ contradiction. \end{array}$

Thus, it is established that $\{x_n\}$ is a Cauchy sequence. Since (X, M, *) is complete, there exists $x^* \in A$ such that

$$\lim_{n \to \infty} x_n = x^*.$$

Since f is $(\phi - \psi)$ - proximal contractive mapping, by using (3.1), we have for all $n \ge 0, t > 0$

$$(\frac{1}{M(fx_n, fx^*, t)} - 1) = (\frac{1}{M(fx_n, fx^*, \phi(t_0))} - 1)$$
$$\leq (\frac{1}{M(fx_n, fx^*, \phi(ct_0))} - 1)$$
$$\leq \psi(\frac{1}{M(x_n, x^*, \phi(t_0))} - 1)$$
$$\leq \psi(\frac{1}{M(x_n, x^*, t)} - 1)$$

Taking limit $n \to \infty$ on both sides of the above inequality, using the fact that $\psi(0) = 0$, we have

 $fx_n \to fx^*$ as $n \to \infty$.

From (3.3) and the above limit, for all t > 0

$$M(A, B, t) = M(x_{n+1}, fx_n, t) = M(x^*, fx^*, t) \text{ as } n \to \infty.$$

Therefore, for all t > 0, $M(x^*, fx^*, t) = M(A, B, t)$. This completes the proof.

4. ILLUSTRATION

Example 15. Suppose that $X = \mathbb{R}^2$ with fuzzy metric space $M((x,y), (x', y'), t) = \frac{t}{t+|x-x'|+|y-y'|}$ and minimum t-norm *. Consider the closed subsets A and B in the topology induced by the fuzzy metric

as

$$A = \{ (0, x) : x \in \mathbb{R} \},\ B = \{ (1, x) : x \in \mathbb{R} \}.$$

Let $\psi(t) = ct$ and $\phi(t) = t^2$, where 0 < c < 1. Let $f: A \to B$ be the mapping defined by

 $f((0,x)) = (1, 1 - e^{-c^3x}).$ Here $M(A, B, t) = \frac{t}{1+t}$ for all t > 0.

Here $A_0 = A$ and $B_0 = B$ and $f(A_0) \subseteq B_0$. Now we show that f satisfies fuzzy P- property. Let $u_1 = (0, x_1), u_2 = (0, x_2) \in A$ and $v_1 = (1, y_1), v_2 = (1, y_2) \in B$ with

$$M(u_1, v_1, t) = M(A, B, t) \text{ for all } t > 0$$
(4.1)

and

$$M(u_2, v_2, t) = M(A, B, t) \text{ for all } t > 0$$
(4.2)

From (4.1), we get for all t > 0 $\frac{t}{t+1+|x_1-y_1|} = \frac{t}{t+1},$ which implies that $x_1 = y_1$. Similarly from (4.2), we get for all t > 0

Now for all t > 0

$$\begin{split} M(u_1, u_2, t) &= \frac{t}{t + |x_1 - x_2|} \\ &= \frac{t}{t + |y_1 - y_2|} \\ &= M(v_1, v_2, t). \end{split}$$

Hence f satisfies fuzzy P- property.

Let $u = (0, x), v = (0, y) \in A$. Without loss of generality, we may assume that x < y.

 $x_2 = y_2.$

Now for all t > 0,

$$\begin{aligned} (\frac{1}{M(fu, fv, \phi(ct))} - 1) &= \frac{|e^{-c^3 x} - e^{-c^3 y}|}{c^2 t^2} \\ &= \frac{c^3 e^{-c^3 [x + \theta(y - x)]} |x - y|}{c^2 t^2} \quad (Using \ MVT, \ where \ 0 < \theta < 1) \\ &\leq \frac{c |x - y|}{t^2} \\ &= c(\frac{1}{M(u, v, \phi(t))} - 1) \\ &= \psi(\frac{1}{M(u, v, \phi(t))} - 1). \end{aligned}$$

Hence f satisfies $(\phi - \psi)$ -proximal contraction. Here $(0,0) \in A$ is the best proximity point of f.

Note: The above illustration indicates that our result is an effective generalization of the fuzzy Banach contraction mapping principle given by Gregori and Sapena [13] in complete fuzzy metric space since the latter is not applicable to the above example.

Acknowledgement: The second author acknowledges the support of UGC, India. The authors are grateful to the referee for the valuable suggestion.

REFERENCES

- [1] Asl, J., Hasanzade, Rezapour, S., Shahzad, N., "On fixed points of $\alpha \psi$ -contractive multifunctions", Fixed Point Theory and Applications, 2012 (2012) 212.
- Bari, C. Di., Suzuki, T., Vetro, C., "Best proximity points for cyclic Mier-Keeler contractions", Nonlinear Analysis: Theory, Methods Applications, 69 (11) (2008) 3790-3794.
 Chauhan, S., Radenović, S., Bhatnagar, S., "Common fixed point theorems for weakly
- [3] Chauhan, S., Radenović, S., Bhatnagar, S., "Common fixed point theorems for weakly compatible mappings in fuzzy metric spaces", *Le Mathematiche*, LXVIII (2013) 87-98.
- [4] Chauhan, S., Shatanawi, W., Kumar, S., Radenović, S., "Existence and uniqueness of fixed points in modified intuitionistic fuzzy metric spaces", *Journal of Nonlinear Science and Applications*, 7 (2014) 28-41.
- [5] Choudhury, B.S., Maity, P., "Best proximity point results in generalized metric spaces", Vietnam Journal of Mathematics, 44 (2) (2016) 339-349.
- [6] Cirić, L., "Some new results for Banach contractions and Edelstein contractive mappings on fuzzy metric spaces", Chaos Solitons and Fractals, 42 (2009) 146-154.
- [7] Došenović, T., Rakić, B., Carić, D., Radenović, S., "Multivalued generalizations of fixed point results in fuzzy metric spaces", Nonlinear Analysis: Modelling and Control, 21 (2) (2015) 211-222.
- [8] Dutta, P. N., Choudhury, B. S., Das, K., "Some fixed point results in Menger spaces using a control function", Surveys in Mathematics and its Applications, 4 (2009) 41-52.
- [9] Eldred, A., Anthony, Veeramani, P., "Existence and convergence of best proximity points", *Journal of Mathematical Analysis and Applications*, 323 (2) (2006) 1001-1006.
- [10] George, A., Veeramani, P., "On some result in fuzzy metric space", Fuzzy Sets and Systems, 64 (3) (1994) 395-399.
- [11] Grabiec, M., "Fixed points in fuzzy metric spaces", Fuzzy Sets and Systems, 27 (3) (1988) 385-389.
- [12] Gregori, V., Romaguera, S., "Some properties of fuzzy metric spaces", Fuzzy Sets and Systems, 115 (3) (2000) 485-489.
- [13] Gregori, V., Sapena, A., "On fixed-point theorems in fuzzy metric spaces", Fuzzy Sets and Systems, 125 (2) (2002) 245-252.
- [14] Jleli, M., Karapinar, E., Samet, B., "Best proximity point result for MK-proximal contractions", Abstract and Applied Analysis, 2012 (2012) 14 pages.
- [15] Jleli, M., Samet, B., "Best proximity points for $\alpha \psi$ proximal contractive type mappings and applications", Bulletin des Sciences Mathématiques, 137 (8) (2013) 977-995.
- [16] Karapinar, E., "Best proximity points of cyclic mappings", Applied Mathematics Letters, 25 (11) (2012) 1761-1766.
- [17] Kramosil, I., Michalek, J., "Fuzzy metric and statistical metric spaces", *Kybernetica*, 11 (5) (1975) 326-334.
- [18] López, J., Rodríguez, Romaguera, S., "The Hausdorff fuzzy metric on compact sets", Fuzzy Sets and Systems, 147 (2) (2004) 273-283.
- [19] Mihet, D., "On fuzzy contractive mappings in fuzzy metric spaces", Fuzzy Sets and Systems, 158 (8) (2007) 915-921.
- [20] Radenović, S., Kadelburg, Z., Jandrlić, D., Jandrlić, A., "Some results on weakly contractive maps", Bulletin of the Iranian Mathematical Society, 38 (3) (2012) 625-645.
- [21] Raj, V., Sankar, "Best proximity point theorems for non-self mappings", Fixed Point Theory, 14 (2013) 447-454.
- [22] Raj, V., Sankar, "A best proximity point theorem for weakly contractive non-self-mappings", Nonlinear Analysis, 74 (2011) 4804-4808.
- [23] Saha, P., Choudhury, B. S., Das, P., "A new contractive mapping principle in fuzzy metric spaces", Bollettino dell'Unione Matematica Italiana, 8 (2016) 287-296.
- [24] Shayanpour, H., Nematizadeh, A., "Some results on common best proximity point in fuzzy metric spaces", Boletim da Sociedade Paranaense de Matematica, 35 (2017) 177-194.