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Abstract: This paper introduces a simplified solution to determine the asymptotic
results for the renewal density. It also offers the asymptotic results for the first and
second moments of the number of renewals for the discrete-time bulk-renewal process.
The methodology adopted makes this study distinguishable compared to those previously
published where the constant term in the second moment is generated. In similar studies
published in the literature, the constant term is either missing or not clear how it was
obtained. The problem was partially solved in the study by Chaudhry and Fisher where
they provided a asymptotic results for the non-bulk renewal density and for both the
first and second moments using the generating functions. The objective of this work is to
extend their results to the bulk-renewal process in discrete-time, including some numerical
results, give an elegant derivation of the asymptotic results and derive continuous-time
results as a limit of the discrete-time results.
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1. INTRODUCTION

Renewal theory and its applications have a significant role in many different
areas such as failure and replacement of equipment, risk-based asset management
models and queues [8]. The asymptotic results for the first and second moments
for the number of renewals in the non-bulk case are given in recent study by Van
der Weide in [7]. This result provides a constant term in the second moment and
states that it is not clear from Feller [4] as to how to obtain the constant term using
generating functions. The same problem persists in [5] and [6]. Recently, Chaudhry
and Fisher [1] have responded to this problem by providing the asymptotic results
for the non-bulk renewal density as well as for both the first and second moments
using generating functions. The purpose of this note is to extend their results
to bulk-renewal process in discrete-time and give an elegant derivation of the
asymptotic results. Some easy steps could have been avoided, but are included here
for the sake of clarity. Numerical computations of both single-renewal and bulk-
renewal processes are provided in order to demonstrate the accuracy of asymptotic
results. This is done by comparing the analytic, numeric and asymptotic moments
at various renewal times in order to provide readers with better understanding of
our findings.

2. RENEWAL THEORY BASICS

A discrete-renewal process is a process {Nm, m ≥ 1} for which the state space
belongs to a denumerable set {0, 1, 2, . . .}. Nm can count the number of renewals
within a time period (0,m], and the time intervals between renewals are called
renewal periods. Renewals occur at instants of time s1, s2, s3, . . . , and renewal
intervals Tn = sn − sn−1 , n ≥ 1, and s0 = 0 are independent identically dis-
tributed random variables (i.i.d.r.v.s) distributed as T with probability mass func-
tion (p.m.f.)fk = P (T = k) , k ≥ 1, f0 = 0. This p.m.f. has a probability gen-
erating function (p.g.f) f (z) =

∑∞
k=1 fkz

k, |z| < 1 with µ ≡ µ1 = E [T ] < ∞,

σ2 = E
[
T 2
]
− E2 [T ] < ∞, an = dn

dzn f (z) |z=1, n ≥ 1 and µn = E [Tn] , n ≥ 1.
If Wn is the total waiting time until the n-th renewal occurs, then Wn =

∑n
r=1 Tr

with W0 = 0. The renewal equation is defined as mk = fk +
∑k
j=1mk−jfjwhere

mk = P (renewalattimek) with m1 = f1 and m0 = 0 (implying no renewal at time
0). The left-hand side of the renewal equation is the probability of a renewal tak-
ing place at time k while the right-hand side is either a first renewal occurring at
time k or a renewal occurring at time j ≥ 1 with probability fj and a subsequent
renewal at time (k − j) with probability mk−j . The generating function (gf) for

the renewal density is m (z) =
∑∞
k=1mkz

k = f(z)
1−f(z) , (|z| < 1). The mean value

of the discrete-time renewal process {Nm} is referred to as the renewal function
and is defined as Mm ≡ E [Nm] , (m ≥ 1). A great portion of renewal theory is
concerned with properties of the renewal function, and it is for this reason that its
asymptotic results are of such great interest.
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3. BULK RENEWAL PROCESS

Assume that the group of renewals occurs at time s1, s2, . . . with group size Xi,
where Xi are independent and identically distributed random variables (i.i.d.r.v’s)
distributed as X with PX (z) = E

[
zX
]

=
∑∞
n=1 bnz

n, µX = P ′X (1) and P ′′X (1) =
d2

dz2PX (z) |z=1. If Nm is the number of groups arriving in the time interval

(0,m], then the total number of renewals is YNm
=
∑Nm

i=1Xi with pmf Bn (m) =
P (YNm

= n) , (n = 0, 1, 2, . . .). Since YNm
is a random variable based on two

parameters (n,m), we first take a gf with respect to n, such that P(z,m) =

E
[
zYNm

]
= E

[
E
[
z
∑Nm

i=1 Xi |Nm
]]

=
∑∞
n=0E

[
z
∑Nm

i=1 Xi

∣∣∣Nm = n
]
Pn(m)

=
∑∞
n=0 (PX (z))

n
Pn (m) , (|z| < 1, m ≥ 1) 1 Equation (1) reduces to a single-

renewal process if PX (z) = z, where YNm
becomes Nm. Given (1), the generating

function (gf) of P (z,m) with respect tom is given by P(z, v) =
∑∞
m=1 P (z,m)vm =∑∞

m=1 {
∑∞
n=0 (PX(z))

n
Pn (m)} vm

=
∑∞
n=0 (PX (z))

n∑∞
m=1 Pn (m) vm

=
∑∞
n=0

1−f(v)
1−v (PX (z) f (v))

n

= 1−f(v)
(1−v)(1−PX(z)f(v)) , (|z| < 1, |v| < 1) 2 where we have used

∑∞
m=1 Pn (m) vm =

fn(v)(1−f(v))
1−v (see [5]) for further details).

4. FIRST MOMENT OF YNm

If Mm = E[YNm ], then the generating function (gf) of the first moment is given
by
M(v) ≡

∑∞
m=1E [YNm ] vm =

∑∞
m=1Mmv

m = d
dz
P (z, v) |z=1 = f(v)

(1−v)(1−f(v))
µX , (|v| < 1)

Assuming that the renewal event is aperiodic recurrent with σ < ∞ and

µX < ∞, we now want to show that Mm =
(
m
µ

)
µx + µx

(
σ2−µ2+µ

2µ2

)
+ o(1)is

true, where o (1)→ 0 as m→∞.

Proof:

In the recurrent case f (1) = 1, following the procedure similar to the one used in

[3] for the continuous-time, we have M(v) = C−2

(1−v)2 + C−1

(1−v) + O (1) 3 leading to

Mm = (m+ 1)C−2 + C−1 + o (1) 4 with O(1) indicating a function of v bounded
as v → 1− and o (1) indicating a function of m tending to zero as m→∞. From
equation (3), we get

C−2 = limv→1− (1− v)2M(v) = limv→1− (1− v)2 f(v)
(1−v)(1−f(v))

P ′X(1) =
P ′X(1)
f ′(1) = µX

µ and C−1 = limv→1−

{
(1− v)

f(v)P ′X(1)
(1−v)(1−f(v)) −

P ′X(1)
µ(1−v)

}
=

P ′X (1) limv→1−
µf(v)(1−v)−(1−f(v))

µ(1−v)(1−f(v))

= P ′X (1)
(
f ′′(1)
2µ2 − 1

)
= µX

(
σ2+µ2−µ

2µ2 − 1
)

Substituting C−1 and C−2 into equa-

tion (4) gives Mm =
(
m
µ

)
µx + µx

(
σ2−µ2+µ

2µ2

)
+ o(1)where o (1)→ 0 as m→∞.
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In the case of single-arrivals (PX (z) = z, µX = 1), the above result corresponds
to Feller [5] and Hunter [6]. The above result leads to the well-known result,
limm→∞

Mm

m = µX

µ , which gives the arrival rate for the discrete-time bulk-arrival
renewal process. Further, it is interesting to see that the first asymptotic moment
of continuous-time bulk-renewal process discussed in [2] can also be derived if we
let µ = µ̂

∆ , σ2 = ( σ̂∆ )2 and m = t
∆ , and then take the limit of Mm as ∆ → 0,

where µ̂, σ̂, and t are the parameters for the continuous time process. By doing

so, Mm becomes M(t)=
(
t
µ̂

)
µx + µx

(
σ̂2−µ̂2

2µ̂2

)
+ o(1)where o (1) → 0 as t → ∞

and t > 0.

5. SECOND MOMENT OF YNm

If M
(2)
m = E[Y 2

Nm
], its probability generating function (pgf) M (2) (v) can be

expressed in terms of first and second derivatives of equation (2) at z = 1, in other

words M(2) (v) ≡
∑∞
m=1M

(2)
m vm = d2

dz2P (z, v) |z=1 + d
dzP (z, v) |z=1

= f(v)
(1−v)(1−f(v))

(
2f(v)µ2

X+µX−µXf(v)
1−f(v) + P ′′X (1)

)
Assuming that the renewal event is

aperiodic recurrent with µ3 < ∞ and d2

dz2PX (z) |z=1 < ∞, we now want to show

that M
(2)
m = m2

(
µx

µ

)2

+m
(
µ2
x

µ2 + µx

µ −
2µ2

x

µ +
P ′′X(1)
µ +

2µ2
xσ

2

µ3

)
+ 2µ2

x − µx − P ′′X (1) +
8µ2

x

3µ2 − 2µ2
xµ3

3µ3 + µx

µ −
4µ2

x

µ +
P ′′X(1)
µ

+
P ′′X(1)σ2

2µ2 − 2(σµx)2

µ2 + µxσ
2

2µ2 + 4(σµx)2

µ3 +
3µ2

xσ
4

µ4 + o(1)where o (1)→ 0 as m→∞.

Proof:

Now we make similar assumptions as we did in the case of first moment in order to
find the asymptotic result for the second moment. M(2) (v) = C−3

(1−v)3 + C−2

(1−v)2 +
C−1

(1−v) + O (1) 5 leading to M2
m = E

[
Y 2
Nm

]
= (m+2)!

2!m! C−3 + (m+ 1)C−2 + C−1 +

o (1) 6 All the constant terms can be found in a manner as we did for the first mo-

ment. C−3 = limv→1− (1− v)3M (2) (v) =
P ′X(1)
µ limv→1−

2(1−v)f(v)P ′X(1)+(1−v)(1−f(v))
1−f(v)

=
P ′X(1)
µ

(
2P ′X(1)
f ′(1)

)
= 2

(
µx

µ

)2

C−2 = limv→1−

{
(1− v)2M (2) (v)− C−3

(1−v)

}
= 6 limv→1−

{
(1− v)2M (2) (v)− 2(P ′X(1))

2

µ2(1−v)

}
= limv→1−


(1−v)f(v)(P ′X(1)−P ′X(1)f(v)+2f(v)(P ′X(1))

2
)

(1−f(v))2

+
(1−v)2f(v)P ′′X(1)

(1−v)(1−f(v)) −
2(P ′X(1))

2

µ2(1−v)


= limv→1−

f1(x)
(1−f(v))2(1−v)(1−f(v))µ2(1−v) ,

f1(x) = (1− v) f(v)(P ′X (1)− P ′X (1) f (v)

+2f(v)P′X (1)
2
) (1− v) (1− f (v))µ2 (1− v)
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+(1-v)2f(v)P ′′X (1) (1− f (v))2µ2 (1− v)

-2P′X (1)
2

(1− f (v))2 (1− v) (1− f (v))

by applying L’Hospital’s rule, we have C2 =
µ2µx−4µ2

xµ
2+2µ2

xa2+µ2P ′′X(1)
µ3 and

C−1 = lim
v→1−

{
(1− v)M (2) (v)− C−3

(1− v)2
− C−2

(1− v)

}

= lim
v→1−


f(v)(P ′X(1)−P ′X(1)f(v)+2f(v)P ′X(1)2)(1−v)

(1−v)(1−f(v))2 +
P ′′X(1)f(v)(1−f(v))2

(1−f(v))3

− 2(P ′X(1)2−f(v)P ′X(1)2)(1−f(v))

µ2(1−v)2(1−f(v))2
− µ2P ′X(1)−4P ′X(1)2µ2+2P ′X(1)2a2+µ2P ′′X(1)

µ3(1−v)


= lim

v→1−

{
f2(x)

(1− v)(1− f (v))2(1− f (v))3µ2 (1− v)
2

(1− f (v))2µ3 (1− v)

}
,

f2(x) = f(v)(P ′X (1)− P ′X (1) f (v) + 2f(v)P ′X (1)
2
)(1− v)4(1− f (v))5µ5

+P ′′X (1) f (v) (1− f (v))6µ2 (1− v)
4
µ3

−2(P ′X (1)
2 − f(v)P ′X (1)

2
)(1− v)2(1− f (v))3µ3.

By applying L’Hopital’s rule, we have C−1 =
3µ2

x

2 −
µx

2 −
P ′′X(1)

2 +
µ2
x

6µ2− 2µ2
x(a3+3a2+µ)

3µ3 +

µx

2µ −
µ2
x

µ

+
P ′′X(1)

2µ +
P ′′X(1)(a2+µ−µ2)+2µ2

x(a2+µ−µ2)+µx(a2+µ−µ2)
2µ2

+
µ2
x(a2+µ−µ2)

µ3 +
3µ2

x(a22+2a2µ−2a2µ
2+µ2−2µ3+µ4)

2µ4 Substituting C−1, C−2 and C−3

into equation (6) with a3 ≡ E [(T − 2) (T − 1)T ] = E
[
T 3
]
− 3E

[
T 2
]

+ 2E [T ] =

µ3 − 3µ2 + 2µ and a2 = E [(T − 1)T ] = E
[
T 2
]
− E [T ] = µ2 − µ, we have

M
(2)
m = m2

(
µx

µ

)2

+m
(
µ2
x

µ2 + µx

µ −
2µ2

x

µ +
P ′′X(1)
µ +

2µ2
xσ

2

µ3

)
+
(

2µ2
x − µx − P ′′X (1) +

µ2
x

6µ2 − 2µ2
xµ3

3µ3 + µx

2µ −
2µ2

x

µ +
P ′′X(1)

2µ

+
P ′′X(1)µ2

2µ2 − 2µ2µ
2
x

µ2 + µ2µx

2µ2 +
µ2µ

2
x

µ3 + 3(µ2µx)2

2µ4

)
+o(1) and by substituting µ2 = σ2+

µ, the final expression is M
(2)
m = m2

(
µx

µ

)2

+m
(
µ2
x

µ2 + µx

µ −
2µ2

x

µ +
P ′′X(1)
µ +

2µ2
xσ

2

µ3

)
+
(

2µ2
x − µx − P ′′X (1) +

8µ2
x

3µ2 − 2µ2
xµ3

3µ3 + µx

µ −
4µ2

x

µ +
P ′′X(1)
µ

+
P ′′X(1)σ2

2µ2 − 2(σµx)2

µ2 + µxσ
2

2µ2 + 4(σµx)2

µ3 +
3µ2

xσ
4

µ4

)
+ o(1)The first two terms of the

above expression correspond to Feller [5] and Hunter [6] when PX (z) = z. How-
ever, this paper provides extra constant terms in addition to the first two terms.
This result matches with that given in [1] if PX (z) = z. Similar to the first mo-

ment, limm→∞
M(2)

m

m2 =
(
µX

µ

)2

gives the 2nd moment of the number of renewals in

discrete-time bulk-arrivals. Further, the second asymptotic moment of continuous-
time bulk-renewal process discussed in [2] can be derived if we let µ = µ̂

∆ , σ2 = ( σ̂∆ ),
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µ3 = µ̂3

∆3 and m = t
∆ , and then take the limit of M

(2)
m as ∆ → 0. By doing so,

M
(2)
m becomes M(2) (t) = t2

(
µx

µ̂

)2

+ t
(
P ′′X(1)−2µ2

x+µx

µ̂ +
2σ̂2µ2

x

µ̂3

)
+
(
σ̂2P ′′X(1)

2µ̂2 + σ̂2µx

2µ̂2 − µx

2 −
2µ̂3µ

2
x

3µ̂3 +
3σ̂4µ2

x

2µ̂4 +
σ̂2µ2

x

µ̂2 +
3µ2

x

2 −
P ′′X(1)

2

)
+o(1)where o (1)→

0 as t→∞ and t > 0.

6. NUMERICAL COMPUTATIONS

In Section 6.1, we first compute the distribution of a single-renewal process
(Pn (m)), which are used in Section 6.2 to compute the distribution of a bulk-
renewal process (Bn (m)).

6.1. Numerical computations in discrete-time single-renewal process

Pn (m) is the probability mass function (pmf) of the number of renewals (Nm)
that occur over the time period (0,m]. In computing Pn (m), we consider various
inter-renewal times such as geometric, negative binomial, and Poisson distribu-
tions. All computations were done using MAPLE software, calibrated to compute
up to ninth decimal place. In presenting our numerical work, all numerical results
were rounded to four decimal places in the tables below

The inter-renewal time (k) has a probability mass function (pmf), fk, which
follows a geometric distribution such that fk = pqk−1, (k ≥ 1) with probability
generating function (pgf) f (v) = pv

(1−qv) , |v| < 1 and p = 0.3, q = 0.7. Pn (m) is

computed at m = 1, 5, 10, 15, 20 and 0 ≤ n ≤ 6.

Table 1: Geometric arrival pattern

m P0(m) P1(m) P2(m) P3(m) P4(m) P5(m) P6(m) . . . E [Nm] E
[
N2
m

]
1 0.7000 0.3000 0.0000 0.0000 0.0000 0.0000 0.0000 . . . 0.3000 0.3000
5 0.1681 0.3602 0.3087 0.1323 0.0284 0.0024 0.0000 . . . 1.5000 3.3000
10 0.0283 0.1211 0.2335 0.2668 0.2001 0.1029 0.0368 . . . 3.0000 11.1000
15 0.0048 0.0305 0.0916 0.1700 0.2186 0.2061 0.1472 . . . 4.5000 23.4000
20 0.0008 0.0068 0.0279 0.0716 0.1304 0.1789 0.1916 . . . 6.0000 40.2000

The inter-renewal time (k) has a probability mass function (pmf), fk, which fol-
lows a negative binomial distribution such that fk = ( k + r − 2k − 1) prqk−1, (k ≥ 1)

with probability generating function ( pgf) f (v) = v
(

p
1−qv

)r
, |v| < 1 and

p = 0.75, q = 0.25 and r = 13. Pn (m) is computed at m = 1, 10, 20, 30
and 0 ≤ n ≤ 6.

Table 2: Negative binomial arrival pattern

m P0(m) P1(m) P2(m) P3(m) P4(m) P5(m) P6(m) . . . E [Nm] E
[
N2
m

]
1 0.9762 0.0238 0.0000 0.0000 0.0000 0.0000 0.0000 . . . 0.0238 0.0238
10 0.0295 0.4571 0.4317 0.0772 0.0045 0.0001 1.4277x10−6 . . . 1.5703 2.9526
20 7.9845x10−6 0.0064 0.1343 0.4058 0.3328 0.1041 0.0154 . . . 3.4453 12.7406
30 7.4214x10−11 6.0263x10−6 0.0015 0.0354 0.1929 0.3535 0.2779 . . . 5.3203 29.5570
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The inter-renewal time (k) has a probability mass function (pmf), fk, which

follows a Poisson distribution such that fk = αk−1

(k−1)!e
−α, (k ≥ 1) with probability

generating function ( pgf) f (v) = ve−α(1−v), |v| < 1, where α = 2. Pn (m) is
computed at m = 1, 5, 10, 15 and n = 0, 1, 2, 3, 4.

Table 3: Poisson arrival pattern

m P0(m) P1(m) P2(m) P3(m) P4(m) . . . E [Nm] E
[
N2
m

]
1 0.8647 0.1353 0.0000 0.0000 0.0000 . . . 0.1353 0.1353
5 0.0527 0.5139 0.3715 0.0590 0.0030 . . . 1.4459 2.5791
10 4.6498x10−5 0.02 13 0.2347 0.4306 0.2463 . . . 3.1111 10.5432
15 4.2000x10−9 7.6325x10−5 0.0088 0.1031 0.3050 . . . 4.7778 24.0617

6.2. Numerical computations in discrete-time bulk-renewal process

Bn (m) is the probability mass function (pmf) of the total number of renewals
(YNm

) that occur over the time period (0,m]. In computing Bn (m), we consider
the same inter-renewal time distributions used in Section 6.1., while incorporating
different batch size distributions such as binomial and 1-3-6-9 distributions (re-
newals occur in a group of size 1, 3, 6, and 9 with corresponding probabilities).
Moreover, we find the first and second moments of YNm using three different ap-
proaches; analytically, asymptotically, and numerically. These are then compared

at various values of m. Analytic moments (Manalytic and M
(2)
analytic

)
are deter-

mined directly from the inversion of the equations M(v) = f(v)
(1−v)(1−f(v))µX

M (2) (v) = f(v)
(1−v)(1−f(v))

(
2f(v)µ2

X+µX−µXf(v)
1−f(v) + P ′′X (1)

)
The asymptotic moments(

Masymptotic and M
(2)
asymptotic

)
are computed using the derived results in Sections

4 and 5. The numeric moments
(
Mnumeric and M

(2)
numeric

)
are computed from

Bn (m) found from the coefficients of Taylor’s series expansion of the expression
E
[
zYm

]
=
∑∞
n=0Bn (m) zn =

∑∞
n=0 (PX (z))

n
Pn (m)where Pn (m) are provided

in Tables 1, 2, and 3 of Section 6.1.

6.2.1. Binomial group size distribution

The probability mass function (pmf) of the group size (X) follows a binomial
distribution
bn = ( rn− 1) pnqr−n+1, (1 ≤ n ≤ 4) with probability generating function ( pgf)
PX (z) = z (q + pz)

r
where p = 0.45, q = 0.55 and r = 3.

6.2.2. 1-3-6-9 group size distribution

The probability mass function (pmf) of the group size (X) is b1 = 0.1, b3 =
0.25, b6 = 0.45, b9 = 0.2 with probability generating function ( pgf) PX (z) =
0.1z + 0.25z3 + 0.45z6 + 0.2z9.



142 J.J.Kim, and al. / Asymptotic Results for the First and Second Moments

Table 4: Geometric arrival pattern

m B0(m) B1(m) B2(m) B3(m) B4(m) B5(m) B6(m) . . .
1 0.7000 0.0499 0.1225 0.1002 0.0273 0.0000 0.0000 . . .
5 0.1681 0.0599 0.1556 0.1629 0.1231 0.1085 0.0864 . . .
10 0.0283 0.0201 0.0559 0.0734 0.0851 0.1019 0.1069 . . .
15 0.0048 0.0051 0.0150 0.0234 0.0342 0.0483 0.0608 . . .
20 0.0008 0.0011 0.0036 0.0064 0.0109 0.0174 0.0251 . . .

m Manalytic Masymptotic Mnumeric M
(2)

analytic
M

(2)

asymptotic M
(2)

numeric
1 0.7050 0.7050 0.7050 1.8795 1.8795 1.8796
5 3.5250 3.5250 3.5250 19.3380 19.3380 19.3376
10 7.0500 7.0500 7.0500 63.5273 63.5273 63.5273
15 10.5750 10.5750 10.5750 132.5678 132.5678 132.5678
20 14.1000 14.1000 14.1000 226.4595 226.4595 226.4595

Table 5: Negative binomial arrival pattern

m B0(m) B1(m) B2(m) B3(m) B4(m) B5(m) B6(m) . . .
1 0.9762 0.0040 0.0097 0.0079 0.0022 0.0000 0.0000 . . .
2 0.8990 0.0167 0.0410 0.0336 0.0093 0.0002 0.0001 . . .
3 0.7639 0.0386 0.0948 0.0780 0.0223 0.0013 0.0008 . . .
4 0.5950 0.0646 0.1591 0.1320 0.0400 0.0050 0.0031 . . .
5 0.4261 0.0879 0.2170 0.1826 0.0606 0.0136 0.0085 . . .

m Manalytic Masymptotic Mnumeric M
(2)

analytic
M

(2)

asymptotic M
(2)

numeric
1 0.0558 N/A 0.0558 0.1488 0.7995 0.1488
2 0.2386 0.1652 0.2386 0.6423 1.1005 0.6423
3 0.5648 0.6059 0.5648 1.5528 1.7898 1.5528
4 0.9911 1.0465 0.9911 2.8290 2.8674 2.8290
5 1.4575 1.4871 1.4575 4.4059 4.3333 4.4059

Table 6: Poisson arrival pattern

m B0(m) B1(m) B2(m) B3(m) B4(m) B5(m) B6(m) . . .
1 0.8647 0.0225 0.0553 0.0452 0.0123 0.0000 0.0000 . . .
5 0.0527 0.0855 0.2201 0.2225 0.1521 0.1192 0.0817 . . .
10 4.6498x10−5 0.0036 0.0152 0.0410 0.0820 0.1208 0.1433 . . .
15 4.1957x10−9 1.2699x10−5 0.0003 0.0017 0.0062 0.0164 0.0343 . . .

m Manalytic Masymptotic Mnumeric M
(2)

analytic
M

(2)

asymptotic M
(2)

numeric
1 0.3180 0.2611 0.3181 0.8479 1.2415 0.8481
5 3.3978 3.3945 3.3979 15.3169 15.3219 15.3170
10 7.3111 7.3111 7.3111 60.5347 60.5349 60.5347
15 11.2278 11.2278 11.2278 136.4284 136.4284 136.4284
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Table 7: Geometric arrival pattern

m B0(m) B1(m) B2(m) B3(m) B4(m) B5(m) B6(m) . . .
1 0.7000 0.0300 0.0000 0.0750 0.0000 0.0000 0.1350 . . .
5 0.1681 0.0360 0.0031 0.0902 0.0154 0.0010 0.1814 . . .
10 0.0282 0.0121 0.0023 0.0305 0.0117 0.0020 0.0693 . . .
15 0.0048 0.0031 0.0009 0.0078 0.0046 0.0013 0.0197 . . .
20 0.0008 0.0007 0.0003 0.0018 0.0014 0.0005 0.0050 . . .

m Manalytic Masymptotic Mnumeric M
(2)

analytic
M

(2)

asymptotic M
(2)

numeric
1 1.6050 1.6050 1.6050 10.4250 10.4250 10.4250
5 8.0250 8.0250 8.0250 103.6455 103.6455 103.6455
10 16.0500 16.0500 16.0500 336.0923 336.0923 336.0923
15 24.0750 24.0750 24.0750 697.3403 697.3403 697.3403
20 32.1000 32.1000 32.1000 1187.3895 1187.3895 1187.3895

Table 8: Negative binomial arrival pattern

m B0(m) B1(m) B2(m) B3(m) B4(m) B5(m) B6(m) . . .
1 0.9762 0.0024 0.0000 0.0059 0.0000 0.0000 0.0107 . . .
2 0.8990 0.0100 5.6441x10−6 0.0251 2.8220x10−5 0.0000 0.0452 . . .
3 0.7639 0.0232 4.2197x10−2 0.0580 0.0002 1.0057x10−7 0.1046 . . .
4 0.5950 0.0388 0.0002 0.0971 0.0008 1.0787x10−6 0.1758 . . .
5 0.4261 0.0528 0.0005 0.1321 0.0022 5.9502x10−6 0.2406 . . .

m Manalytic Masymptotic Mnumeric M
(2)

analytic
M

(2)

asymptotic M
(2)

numeric
1 0.1271 N/A 0.1271 0.8256 3.8765 0.8255
2 0.5432 0.3762 0.5432 3.5606 5.8639 3.5606
3 1.2858 1.3793 1.2858 8.5955 9.8639 8.5955
4 2.2563 2.3824 2.2563 15.6234 15.8764 15.6234
5 3.3180 3.3856 3.3180 24.2488 23.9014 24.2488

Table 9: Poisson arrival pattern

m B0(m) B1(m) B2(m) B3(m) B4(m) B5(m) B6(m) . . .
1 0.8647 0.0134 0.0000 0.0338 0.0000 0.0000 0.0609 . . .
5 0.0527 0.0514 0.0037 0.1285 0.0186 0.0004 0.2545 . . .
10 0.0005 0.0021 0.0024 0.0058 0.0118 0.0032 0.0245 . . .
15 4.1957x10−9 7.6325x10−6 8.7512x10−5 0.0001 0.0005 0.0008 0.0009 . . .

m Manalytic Masymptotic Mnumeric M
(2)

analytic
M

(2)

asymptotic M
(2)

numeric
1 0.7240 0.5944 0.7240 4.7029 6.6880 4.7029
5 7.7353 7.7278 7.7352 82.6810 82.7040 82.6808
10 16.6445 16.6444 16.6445 320.8354 320.8364 320.8354
15 25.5611 25.5611 25.5611 717.9826 717.9827 717.9826
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7. CONCLUSION

The method of generating function (gf) as illustrated in this paper, provides
a shorter and simpler alternative to the usually used method for determining the
asymptotic results of the discrete bulk-arrival renewal process. The generating
function (gf) of first and second moments are first described as M(v) and M (2)(v)
respectively, and then the desired asymptotic results are easily derived. If the first
renewal period (T1) has a different distribution than the other renewal periods,
then the first and second moments can be derived along similar lines. Moreover,
higher order moments and their corresponding asymptotic results can be found
similarly. Numerical examples of various cases have also been presented for the
sake of completeness.
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