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Abstract: A multiprocessor system can be modeled by a graph G. The vertices of
G correspond to processors while edges represent links between processors. To
find suitable models for multiprocessor interconnection networks (briefly MINs),
one can apply tools and techniques of spectral graph theory. In this paper, we
extend some of the existing results and present several graphs which could serve
as models for efficient MINs based on the small values of the previously intro-
duced graph tightness. These examples of possible MINs arise as a result of some
well-known and widely used graph operations. We also examine the suitability of
strongly regular graphs (briefly SRGs) to model MINs, and prove the uniqueness
of some of them.
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1. INTRODUCTION

Spectral graph theory is a mathematical theory in which linear algebra and
graph theory meet. It is a very well developed mathematical field (see, for exam-
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ple, [7] or [8]), but also an engineering discipline [14]. Here it will be applied to
the study of multiprocessor interconnection networks (briefly MINs).

Let G be a simple graph on n vertices, with the adjacency matrix A = A(G). The
characteristic polynomial PG(x) = det(xI − A) of G is the characteristic polynomial
of its adjacency matrix A. The eigenvalues of A, in non-increasing order, are
denoted by λ1(G), . . . , λn(G) and they form the spectrum of G. The multiplicity k
of the eigenvalue λi in the spectrum of G will be denoted by [λi]k. Since A is real
and symmetric, the spectrum of G consists of reals. In particular, λ1(G), as the
largest eigenvalue of G, is called the index of G, and it presents one of the graph
invariants.

The graph invariant is a function of a graph G which does not depend on
labeling of G’s vertices or edges. The other examples of graph invariants are
the minimum δ and the maximum ∆ vertex degree, the diameter, the radius, the
average distance, the independence number, the chromatic number, etc. In order
to study the behavior of a property or invariant of graphs when the number of
vertices varies, it is important that the property (invariant) is scalable. Scalability
means that for each n there exists a graph with n vertices having that property
(invariant) of certain value. A family of graphs is called scalable if for any n there
exists an n-vertex graph in this family.

A path on n vertices is denoted by Pn. An n-vertex cycle is denoted by Cn,
while for a complete graph with n vertices, in which any two vertices are connected
by an edge, we use the label Kn. The set of vertices of the complete bipartite graph
Kn1,n2 is divided into two disjoint subsets of sizes n1 and n2 such that the edges
are connecting each vertex from one subset to all vertices in the other subset. A
complete multipartite graph with k parts and ni (1 ≤ i ≤ k) vertices in each part is
denoted by Kn1,n2,...,nk . If n1 = n2 = · · · = nk = m, we use the short expression Kk×m,
while a graph of the form K1,n we call a star.

The disjoint union of graphs G1,G2, . . . ,Gn is denoted by G1 u G2 u . . . u Gn,
while in the case when G1 = G2 = . . . = Gn = G, we say that the resulting graph is
consisting of n copies of G, and we write n G. The join G1∇G2 of disjoint graphs
G1 and G2 is the graph obtained from G1 uG2 by joining each vertex of G1 to each
vertex of G2. The graph K1∇G2 is called the cone over G2. The coalescence G1 ·G2 of
two graphs G1 and G2, is the graph that is obtained from G1 u G2 by identifying
a vertex v of G1 with a vertex u of G2. The graph G1vuG2 that is obtained from
G1uG2 by adding an edge joining the vertex v of G1 to the vertex u of G2 is a graph
with a bridge. If G1 is a graph with n1 vertices and G2 is a graph with n2 vertices,
then the corona G1 ◦G2 is the graph with n1 + n1 n2 vertices obtained from G1 and
n1 copies of G2 by joining the i-th vertex of G1 to each vertex in the i-th copy of
G2 (i = 1, 2, . . . ,n1). The non-complete extended p-sum, briefly NEPS, of graphs is a
very general graph operation, and we give the definition as it is done in [8], p.44:

Definition 1.1. Let B be a set of non-zero binary n-tuples, i.e. B ⊆ {0, 1}n/{(0, . . . , 0)}.
The NEPS of graphs G1, . . . ,Gn with basis B is the graph with vertex set V(G1) × · · · ×
V(Gn), in which two vertices, say (x1, . . . , xn) and (y1, . . . , yn), are adjacent if and only if
there exists an n-tuple β = (β1, . . . , βn) ∈ B such that xi = yi whenever βi = 0, and xi is
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adjacent to yi (in Gi) whenever βi = 1.

In the special case, when n = 2, we have the following familiar operations:

(i) the sum G1 + G2, when B = {(0, 1), (1, 0)};

(ii) the product G1 × G2, when B = {(1, 1)};

(iii) the strong product G1 ∗ G2, when B = {(0, 1), (1, 0), (1, 1)}.

For the remaining notation and terminology we refer the reader to [7] and [8].
The paper is organized as follows. In Section 2 we present previously defined

quantities and some of the previously obtained results related to the consideration
of MINs by means of graph spectra. Some examples of widely used MINs are
also given. In Section 3 we describe several graphs that could serve as models
for efficient MINs. These examples of possible MINs arise as a result of some
well-known and widely used graph operations. In Section 4 we examine the
suitability of strongly regular graphs (briefly SRGs) to model MINs, and prove
the uniqueness of some of them.

2. PRELIMINARY RESULTS

The graph invariant obtained as the product of the number of distinct eigen-
values m and the maximum vertex degree ∆ of G has been investigated in [11]
related to the design of multiprocessor topologies. The main conclusion of [11]
with respect to the multiprocessor design and, particulary to the load balancing
within given multiprocessor systems was the following: if m∆ is small for a given
graph G, the corresponding multiprocessor topology was expected to have good
communication properties and has been called well-suited. It has also been pointed
out that there exists an efficient algorithm which provides optimal load balancing
within m− 1 computational steps. The graphs with large m∆ were called ill-suited
and were not considered suitable for the design of multiprocessor networks.

On the other hand there are many known widely used multiprocessor topolo-
gies based on graphs which appear to be ill-suited, according to [11]. Some
of the examples are star graphs, 1-dimensional processor arrays, 2-dimensional
processor arrays (also known as mesh architectures), and processor rings (cycles).

In order to extend the application of the theory of graph spectra to the de-
sign of multiprocessor topologies, in [2, 3] some other similar graph invariants
called tightness were defined and their suitability for describing the corresponding
interconnection networks was investigated in [4, 6].

2.1. Basic definitions and properties of graph tightness
There are four types of graph tightness, two mixed and two homogeneous.

Mixed tightness depends on one spectral and one structural invariant, while
homogenous tightness is a product of two invariants of the same type.
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Definition 2.1. The type one mixed tightness t1 of a graph G is defined as the product
of the number of distinct eigenvalues m and the maximum vertex degree ∆ of G, i.e.
t1(G) = m∆.

Definition 2.2. The structural tightness stt(G) is product (D+1)∆, where D is diameter
and ∆ is the maximum vertex degree of a graph G.

Definition 2.3. The spectral tightness spt(G) is product of the number of distinct
eigenvalues m and the largest eigenvalue λ1 of a graph G.

Definition 2.4. The second type mixed tightness t2(G) is defined as a product of the
diameter D of G and the largest eigenvalue λ1, i.e. t2(G) = (D + 1)λ1.

It is easy to see [2] that there is a partial order between various types of
tightness. The value for t1(G) is always greater than or equal to any other tightness.
The two homogeneous tightness appear to be incomparable, while for t2(G) holds
t2(G) ≤ spt(G) and t2(G) ≤ stt(G).

In [2, 4, 5] it was suggested that t2(G) is more appropriate parameter for
selecting well-suited interconnection topologies than t1(G). The star graph and
some other examples suggest that the classification based on the tightness t2 seems
to be more adequate.

The obvious conclusion is that the well-suited interconnection network accord-
ing to the value for t1 remain well-suited also when t2 is taken into consideration.
In this way, some new graphs become suitable for modelling multiprocessor
interconnection networks. Some of these ”new” types of graphs are already rec-
ognized by multiprocessor system designers (like stars and bipartite graphs). A
new family of suitable graphs is described in [5]; it is the family of quasi-regular
trees.

The defined graph invariants can be applied to the investigation of MINs in
three ways. The tightness values of widely used multiprocessor architectures
should be calculated in order to confirm/refute that they are well-suited. The
second possibility is to propose new MINs that are well-suited according to t2.
Finally, the theoretically challenging task is to search for extremal graphs accord-
ing to tightness values in some (scalable) classes of graphs. Here, we first analyze
some frequently used MINs, and then we propose some new well-suited graphs
for modelling MINs.

We first present a theorem and its corollaries from [2] that seem to be of
fundamental importance in studying the tightness of a graph.

Theorem 2.5. For any kind of tightness, the number of connected graphs with a bounded
tightness is finite.

Corollary 1. The tightness of graphs in any scalable family of graphs is unbounded.
Corollary 2. Any scalable family of graphs contains a sequence of graphs, not necessarily
scalable, with increasing tightness diverging to +∞.

Having these facts in mind, the asymptotic behavior of the tightness, when n
tends to +∞, is of particular interest in the analysis of MINs. Typically, in suitable
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(scalable) families of graphs the tightness values have asymptotic behavior, for
example, O(log n) or O(

√
n) [4]. Several cases are studied in [2] and reviewed also

here in the rest of this section.

2.2. Examples of widely used interconnection networks
Here we present some graphs that are often used to model MINs and compare

the corresponding tightness values.

1. The d-dimensional hypercube Q(d). It consists of n = 2d vertices, each of them
connected to d neighbors. For these graphs it holds m = d + 1, D = d, ∆ =
d, λ1 = d and therefore

t1(Q(d)) = stt(Q(d)) = spt(Q(d)) = t2(Q(d)) = (d + 1)d = O((log n)2).

2. The butterfly graph B(k) is containing n = 2k(k + 1) vertices. The vertices of
this graph are organized in k+1 levels (columns) each containing 2k vertices.
In each column, vertices are labelled in the same way (from 0 to 2k

− 1). An
edge is connecting two vertices if and only if they are in the consecutive
columns i and i + 1 and their numbers are the same or they differ only
in the bit at the i-th position. For these graphs we have ∆ = 4, D = 2k,
λ1 = 4 cos(π/(k + 1)) [11]. However, it is not obvious how to determine
parameter m. Therefore,

t1(B(k)) ≥ stt(B(k)) = 4(2k + 1) = O(log n)

and

spt(B(k)) ≥ t2(B(k)) = 4(2k + 1) cos(π/(k + 1)) = O(k) = O(log n).

3. The d-ary de Bruijn directed graph BD(d,n), is a graph on N = dn vertices
labelled with all n-tuples over the alphabet {0, 1, . . . , d − 1}, such that there
is a directed edge from a vertex (a1, a2, . . . , an) to a vertex (b1, b2, . . . , bn),
whenever bi = ai+1 for all i in the range 1 ≤ i ≤ n − 1 [10]. By replacing
each directed edge by an undirected edge, one can obtain the undirected de
Bruijn graph B(d,n). Graph B(d,n) contains loops and double edges and it
is regular of degree 2d. More precisely this B(d,n) has exactly d loops (one
for each vertex labelled with (α, α, . . . , α)), and there are d(d − 1)/2 double
edges between the vertices labelled with (α, β, α, β, . . .) and (β, α, β, α, . . .)
(with α , β). For MINs, loops and double edges are not relevant and they
can be easily deleted from B(d,n). The resulting graph will have smaller λ1
value. The original graph B(d,n) has λ1 = 2d, ∆ = 2d, D = n = log N [15].
Therefore,

t1(B(d,n)) ≥ stt(B(d,n)) = 2d(n + 1)

and
spt(B(d,n)) ≥ t2(B(d,n)) = 2d(n + 1).
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Consecutively, stt(B(d,n)), t2(B(d,n)) = O(log N), where N represents the
number of vertices.

4. The stars Sn = K1,n−1 have the following invariants m = 3, ∆ = n − 1, D = 2,
λ1 =

√
n − 1, and therefore,

t1(Sn) = 3(n − 1), stt(Sn) = 3(n − 1), spt(Sn) = 3
√

n − 1, t2(Sn) = 3
√

n − 1.

5. The cycles Cn are used to model processor ring interconnection networks.
Their characteristics are m = bn/2c + 1,∆ = 2,D = bn/2c, λ1 = 2. Therefore,

t1(Cn) = stt(Cn) = stt(Cn) = t2(Cn) = 2(bn/2c + 1).

6. For Kn1,n2 we have m = 3, ∆ = max{n1,n2}, D = 2, λ1 =
√

n1n2 and hence

t1(Kn1,n2 ) = stt(Kn1,n2 ) = 3 max{n1,n2}, spt(Kn1,n2 ) = t2(Kn1,n2 ) = 3
√

n1n2.

In the case n1 = n2 = n/2 all tightness values are of order O(n). However, for
the star Sn we have t2(Sn) = O(

√
n). This may be the indication that complete

bipartite graphs are suitable for modelling multiprocessor interconnection
networks only in some special cases.

7. Mesh (or greed) Mn1,n2 = Pn1 + Pn2 consists of n = n1n2 vertices organized
within layers. For these graphs ∆ = 4, D = n1 + n2 − 2, λ1 = 2 cos(π/(n1 +
1)) + 2 cos(π/(n2 + 1)) [7] and therefore,

t1(Mn1,n2 ) ≥ stt(Mn1,n2 ) = 4(n1 + n2 − 1)

and

spt(Mn1,n2 ) ≥ t2(Mn1,n2 ) = (n1 + n2 − 1)(2 cos(π/(n1 + 1)) + 2 cos(π/(n2 + 1))).

Hence, t2 = O(
√

n) if n1 ≈ n2.
8. Torus Tn1,n2 = Cn1 + Cn2 is obtained if mesh architecture is closed among both

dimensions. The characteristics of a torus are ∆ = 4, D = [n1/2] + [n2/2],
λ1 = 2 cos(2π/n1) + 2 cos(2π/n2) [7], and thus

t1(Tn1,n2 ) ≥ stt(Tn1,n2 ) = 4([n1/2] + [n2/2] + 1)

and

spt(Tn1,n2 ) ≥ t2(Tn1,n2 ) = ([n1/2] + [n2/2] + 1)(2 cos(2π/n1) + 2 cos(2π/n2)).

As in the previous case, we have t2 = O(
√

n) if n1 ≈ n2.

Simple graphs with relatively good characteristics were used in practice to
model MINs based on intuitive knowledge of their creators. For example, cy-
cles, meshes, toruses, arrays may be considered ill-suited even according to t2,
however, in some cases they perform very well in practice [12]. In the rest of
this paper we propose new graphs that should be considered as models for MINs
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with the expectations to show good performance with respect to efficiency of
communication and/or fault tolerance.

3. A FAMILY OF POSSIBLE INTERCONNECTION NETWORKS

In this section we propose several new families of t2-based well-suited graphs.
We give six examples of graphs with the good tightness values. Since the values
of spt and t2 of all of these graphs are at most O(

√
N), where N is the number of

vertices of a graph under consideration, we propose them as models for MINs.
Although star graphs are previously [11] classified to be ill-suited, from the ex-
posed examples it appears that the topologies obtained as the result of some graph
operations with the star graph as one of the operands, are well-suited. All of the
Figures given in the subsequent examples are obtained by using AutoGraphiX
system, briefly AGX (see, for example, [1]).

Example 3.1. Let us consider the graph G1 that is the join of an isolated vertex and p ≥ 1
copies of complete graph with n ≥ 1 vertices, i.e. G1 = K1∇pKn. With another words, G1
is a cone over pKn. The example of G1 for p = 4 and n = 4 is given on Figure 1.

The characteristic polynomials of the two graphs that form G1 are:

PK1 (x) = x and PpKn (x) = (x − n + 1)p (x + 1)p(n−1),

so according to Theorem 2.1.8 from [8], one finds that the characteristic polynomial of G1
is:

PG1 (x) = (x − n + 1)p−1 (x + 1)p(n−1) (x2
− (n − 1)x − np),

and that the spectrum of G1 consists of the following eigenvalues [n − 1]p−1, [−1]p(n−1),
1
2 (n − 1) + 1

2

√
(n − 1)2 + 4np, and 1

2 (n − 1) − 1
2

√
(n − 1)2 + 4np.

Figure 1: Graph G1 for p = 4 and n = 4

The largest eigenvalue of G1 is λ1 = 1
2 (n − 1) + 1

2

√
(n − 1)2 + 4np, the number of

distinct eigenvalues is m ≤ 4, the diameter is D ≤ 2 and the maximum vertex degree is
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∆ = np, so one can calculate:

t1(G1) ≤ 4np;
stt(G1) ≤ 3np;

spt(G1) ≤ 4λ1 = 2(n − 1) + 2
√

(n − 1)2 + 4np;

t2(G1) ≤ 3λ1 =
3
2

(n − 1) +
3
2

√
(n − 1)2 + 4np.

If we denote with N = np + 1 the number of vertices of G1, then for n = p we find
t1(G1) = O(N), stt(G1) = O(N) and spt(G1) = O(

√
N), t2(G1) = O(

√
N), so it seems

that G1, in certain cases, can be used as a model for MINs.

Example 3.2. In this example we analyze the graph G2 that is the result of corona of
a star K1,n−1 with n > 1 vertices and a complete graph Kp with p ≥ 1 vertices, i.e.
G2 = K1,n−1 ◦ Kp. Graph G2 for n = 5 and p = 4 is depicted on Figure 2.

Figure 2: Graph G2 for n = 5 and p = 4

The number of vertices of G2 is equal to N = n + np. Since the characteristic
polynomials of K1,n−1 and Kp are

PK1,n−1 (x) = (x2
− (n − 1)) xn−2 and PKp (x) = (x − p + 1)(x + 1)p−1, (1)

respectively, then, according to Theorem 2.2.5 from [8], we find that the characteristic
polynomial of G2 is:

PG2 (x) =(x + 1)n(p−1)
× (x − (p − 1))n

×

(
x −

p
x − p + 1

)n−2

×

×

1 − n +

(
x −

p
x − p + 1

)2 . (2)

Transforming relation (2) for x , p − 1 we obtain:

PG2 (x) = (x + 1)n(p−1)
· (x2 + (1 − p)x − p)n−2

·Q(x),
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where

Q(x) =x4
− 2(p − 1)x3 + (p2

− 4p + 2 − n)x2+

(2p2
− 4p + 2pn − 2n + 2)x + p2

− (n − 1)(p − 1)2,

and wherefrom we conclude that the number of distinct eigenvalues m of G2 cannot be
greater then 7. By using the software package named Mathematica we found that m ≤ 6
and that the index of G2 is equal to:

λ1(G2) =

√
n − 1
2

+
p − 1

2
+

1
2

√
−2 + 2n + 2p − 2np

√
n − 1

+ n + 2p + p2,

which means that if, for example, n = p, we have λ1 = O(
√

N). The maximum vertex
degree of G2 is ∆ = n − 1 + p, while its diameter is D ≤ 4. So, for n = p we have:
t1(G2) = O(

√
N), stt(G2) = O(

√
N), spt(G2) = O(

√
N) and t2(G2) = O(

√
N).

Example 3.3. We consider the graph G3 that is the result of NEPS with the basis B =
{(0, 1), (1, 0)} of a star K1,n−1 with n > 1 vertices, and a complete graph Kp with p ≥ 1
vertices, i.e. G = K1,n−1 + Kp. This graph for n = 3 and p = 4 is depicted on Figure 3.

Figure 3: Graph G3 for n = 3 and p = 4

Graph G3 has N = n · p vertices. The diameter of such a graph is D ≤ 3,
while the maximum vertex degree is ∆ = n + p − 2. Since the spectrum of K1,n−1 is
√

n − 1, [0]n−2,−
√

n − 1, and the spectrum of Kp is p − 1, [−1]p−1, from Theorem 2.5.4
from [8] one can find that the index of G3 is λ1 =

√
n − 1 + p − 1, while the number of

distinct eigenvalues is m ≤ 6. Now, for n = p it is easy to check that:

t1(G3) ≤ 6(2n − 2) = O(
√

N);

stt(G3) ≤ 4(2n − 2) = O(
√

N);

spt(G3) ≤ 6(
√

n − 1 + n − 1) = O(
√

N);

t2(G3) ≤ 4(
√

n − 1 + n − 1) = O(
√

N).

Example 3.4. Now, we analyze the tightness values of the graph G4 that is the result of
NEPS with the basis B = {(0, 1), (1, 0)} of two stars, K1,n and K1,p, n, p ≥ 1. Graph G4
for n = 3 and p = 4 is depicted on Figure 4.
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Figure 4: Graph G4 for n = 3 and p = 4

Graph G4 has N = np + n + p + 1 vertices. We have that the spectrum of K1,n is
√

n, [0]n−1,−
√

n, so by applying Theorem 2.5.4 from [8], we get that the index of G4 is
λ1 =

√
n +
√

p, while the number of distinct eigenvalues is m ≤ 9. The maximum vertex
degree of G4 is ∆ = n + p, and its diameter is D ≤ 4. So, for n = p it follows:

t1(G4) ≤ 18 n = O(
√

N);

stt(G4) ≤ 10 n = O(
√

N);

spt(G4) ≤ 18
√

n = O(
4√

N);

t2(G4) ≤ 10
√

n = O(
4√

N).

Example 3.5. Let us consider the graph with a bridge G5, that is obtained from K1,n+̇K1,p,
n, p ≥ 1 by adding an edge joining the vertex of the maximum degree in K1,n to the vertex
of the maximum degree in K1,p. Graph G5 for n = 5 and p = 4 is depicted on Figure 5.

Figure 5: Graph G5 for n = 5 and p = 4

This graph has N = n + p + 2 vertices. Since the characteristic polynomial of a star is
known (see relation (1)), then the characteristic polynomial of G5, according to Theorem
2.2.4 from [8], is:

PG5 (x) = xn+p−2 (x4
− (n + p + 1)x2 + np).

Therefore, the number of its distinct eigenvalues is m ≤ 5, while its index is equal to

λ1 =

√
n + p + 1 +

√
(n + p + 1)2 − 4np

2
.
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The diameter of G5 is D = 3, while its maximum vertex degree is ∆ = max{n, p} + 1.
Now, it is easy to verify that for n = p, the tightness values of this graph are:

t1(G5) ≤ 5(n + 1) = O(N);
stt(G5) = 4(n + 1) = O(N);

spt(G5) ≤ 5λ1 = O(
√

N);

t2(G5) = 4λ1 = O(
√

N).

Example 3.6. Graph G6 is formed from (nK2∇K1)+̇K1,p by identifying the vertex of the
maximum degree in the graph nK2∇K1, n ≥ 1 with the vertex of the maximum degree in
the star graph K1,p, p ≥ 1, i.e. G6 = (nK2∇K1) · K1,p is one kind of the coalescence of the
two mentioned graphs. Graph G6 for n = 4 and p = 3 is depicted on Figure 6.

Figure 6: Graph G6 for n = 4 and p = 3

The number of vertices of G6 is N = 2n + p + 1. Since the characteristic polynomial
of a star graph is known (see relation (1)), and the characteristic polynomial of graph
nK2∇K1 can be obtained by using Theorem 2.1.8 from [8], and is of the following form:

PnK2∇K1 (x) = (x − 1)n−1 (x + 1)n (x2
− x − 2n),

according to Theorem 2.2.3 from [8] we find that the characteristic polynomial of G6 is:

PG6 (x) = (x − 1)n−1 (x + 1)n xp−1 (x3
− x2
− (2n + p)x + p).

Therefore the number of its distinct eigenvalues is m ≤ 6. The adjacency matrix A(G6) of
G6 is of the following form:

A(G6) = A(K1,p +̇ (2n)K1) + A((nK2∇K1) +̇ pK1),

where A(G) is the adjacency matrix of a graph G. So, by use of Courant-Weyl inequalities
(see Theorem 1.3.15 from [8]) one can find that

λ1(G6) ≤
√

p +
1
2

(1 +
√

1 + 8n).

The diameter of G6 is D = 2, while the maximum vertex degree is ∆ = 2n + p. Now, it
is a matter of routine to check that for n = p it holds t1(G6) = O(N), stt(G6) = O(N),
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spt(G6) = O(
√

N) and t2(G6) = O(
√

N).

4. STRONGLY REGULAR GRAPHS

A strongly regular graph with parameters (n, r, λ, µ), i.e. SRG(n, r, λ, µ) for
short, is an r-regular graph on n vertices in which any two adjacent vertices have
exactly λ common neighbours and any two non-adjacent vertices have exactly µ
common neighbours. The largest eigenvalue λ1 is equal to the degree r of the
graph. A strongly regular graph G has diameter 2, and it is called primitive if both
G and its complement G are connected. For a sketch of the theory of strongly
regular graphs see, for example, [7], Section 7.2 or [8], Section 3.6.

It is difficult to construct scalable families of SRGs which would be of interest
to the context of this paper. However, there are sporadic examples of SRGs which
are suitable for MINs.

In strongly regular graphs all four types of tightness are mutually equal with
the common value 3r. It seems to be reasonable for a given tightness (i.e. for the
given degree r) to look for graphs with as many vertices as possible.

Looking at a vertex of a strongly regular graph, there are exactly r vertices at
distance 1 and at most r(r − 1) vertices at distance 2. Hence, for the number n of
vertices we have

n ≤ 1 + r + r(r − 1) = 1 + r2. (3)

Strongly regular graphs that attain this bound are known as Moore graphs of
diameter 2. Such graphs exist for r = 2, 3, 7 and possibly for r = 57 (cf. [7], p. 165).
For r = 2 we have the pentagon C5 (5 vertices) and for r = 3 the Petersen graph
(10 vertices). If r = 7 there is a unique graph known as the Hoffman-Singleton
graph. It has 50 vertices. It is not known whether the Moore graph of degree
r = 57 exists. It would have 1 + 572 = 3250 vertices.

The Petersen graph has been considered as interconnection network in the
literature. It has also the property that all its eigenvalues are integral. Such
graphs are called integral graphs. It is claimed in [6] that integral graphs are
suitable as network models since the load balancing in such networks can be
performed in integer arithmetics.

Concerning strongly regular graphs which do not attain the bound (3), we
point out to the case n = 16, r = 5. In fact we have the complement of a strongly
regular graph know as the Clebsh graph. The Clebsh graph is described, for exam-
ple, in [9], p. 9 and Table A3. It has degree 10 and eigenvalues 10, [2]5, [−2]10 (mul-
tiplicities of eigenvalues being presented as exponents). Let us denote the com-
plement of the Clebsh graph by CC. It has degree 5 and eigenvalues 5, [1]10, [−3]5,
hence it is integral.

The graph CC can be described as a modified 4-cube. In a k-cube for each
vertex there is a unique vertex at distance k called antipode. If we connect in a
4-cube each vertex to its antipode by additional edges, we get the graph CC.
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We shall prove that CC is the unique strongly regular graph of degree r = 5. In
the proof of the uniqueness of CC we are looking for all possible nonnegative so-
lutions of the corresponding Diophantine equations obtained from the following
proposition:

Proposition 4.1. (relation (3.14), p.72 from [8]) The parameters (n, r, λ, µ) of a strongly
regular graph satisfy the equation:

r(r − λ − 1) = (n − r − 1)µ.

We also manage some conclusions by use of the following well-known facts
about strongly regular graphs:

Theorem 4.2. (Theorem 3.6.5 from [8]) The distinct eigenvalues of a connected strongly
regular graph with parameters (n, r, λ, µ) are r, s and t where s, t = 1

2 (λ − µ) ±
√
ω and

ω = (λ − µ)2 + 4(r − µ). Their respective multiplicities are 1, f and 1, where

f , 1 =
1
2

{
n − 1 ∓

2r + (n − 1)(λ − µ)
√
ω

}
.

As a consequence of the statement given in Theorem 4.2, it follows that parameters
of a strongly regular graph must be such that f and 1 are positive integers.

Theorem 4.3. (Theorem 3.6.7 from [8]) Let G be a primitive strongly regular graph on
n vertices with eigenvalue multiplicities 1, f , 1. Then

n ≤ min
{1

2
f ( f + 3),

1
2
1(1 + 3)

}
.

The bound for n given by Theorem 4.3 is known as the absolute bound for
strongly regular graphs. The following statement is also well-known:

Proposition 4.4. A strongly regular graph is disconnected if and only if it is isomorphic
to pKl (i.e. the disjoint union of p copies of Kl) for some positive integers p and l. This
occurs if and only if µ = 0.

Propositions 4.5 and 4.6 follow from the existing databases of small strongly
regular graphs. Here we offer theoretical self-contained proofs. First, we have the
following statement:

Proposition 4.5. The graph CC is the unique strongly regular graph of degree r = 5.
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Proof. Let us suppose that G = SRG(n, 5, λ, µ) is a connected strongly regular
graph of degree r = 5. According to (3), we find 6 ≤ n ≤ 26. We will consider
G = SRG(n, 5, λ, µ) for all possible values of n.

If G = SRG(6, 5, λ, µ), then G is the complete graph with 6 vertices, and thus
its spectrum consists of just two distinct eigenvalues, which means that G is not
strongly regular graph.

If G = SRG(7, 5, λ, µ), then the equality of Proposition 4.1 yields the following
Diophantine equation 5λ + µ = 20. All possible nonnegative solutions of this
equation are (λ, µ) ∈ {(0, 20), (1, 15), (2, 10), (3, 5), (4, 0)}. Since G is a graph with 7
vertices, we need to consider only the cases when (λ, µ) = (3, 5) and (λ, µ) = (4, 0).
For G = SRG(7, 5, 3, 5) we calculate that the multiplicities of the corresponding
eigenvalues are 1

2 (6 ± 1), which is in the contradiction with the fact that they
should be integers. If G = SRG(7, 5, 4, 0), then according to Proposition 4.4, G is
disconnected, which is in the contradiction with our assumption.

We can analyze all the remaining cases in the similar way. Namely, for
G = SRG(8, 5, λ, µ) the corresponding Diophantine equation is: 5λ + 2µ = 20,
and its nonnegative solutions are (λ, µ) ∈ {(4, 0), (2, 5), (0, 10)}. For (λ, µ) = (4, 0),
G is disconnected. For (λ, µ) = (2, 5) (i.e. (λ, µ) = (0, 10)) the values of the corre-

sponding eigenvalue multiplicities are not integers, i.e. 1
2

(
21
3 ±

11
3

) (
1
2

(
7 ± 60

4
√

5

))
.

If G = SRG(9, 5, λ, µ), the corresponding Diophantine equation is of the form:
5λ + 3µ = 20, and its nonnegative solutions are (λ, µ) = (1, 5) and (λ, µ) = (4, 0).
In the former case, the values of the corresponding eigenvalue multiplicities are
32±22

8 , while in the later case G is not connected.
In the case G = SRG(10, 5, λ, µ), the corresponding Diophantine equation is:

5λ+ 4µ = 20. Its nonnegative solutions are (λ, µ) = (0, 5) and (λ, µ) = (4, 0). In the
former case, we find that the spectrum of G = SRG(10, 5, 0, 5) is 5, [0]8, −5, and
that the absolute bound (see Theorem 4.3) is not satisfied i.e. we have 10 = n ≤
1 · (1 + 3)/2 = 2. In the later case G is not connected.

If G = SRG(11, 5, λ, µ), the corresponding Diophantine equation is: 5λ + 5µ =
20, and its nonnegative solutions are (λ, µ) ∈ {(4, 0), (3, 1), (2, 2), (1, 3), (0, 4)}. For
(λ, µ) = (4, 0), G is disconnected. It can be checked that in all remaining cases the
values of the corresponding eigenvalue multiplicities are not integers. They are

equal to: 1
2

(
10 ± 30

2
√

5

)
if (λ, µ) = (3, 1), 1

2

(
10 ± 10

2
√

3

)
if (λ, µ) = (2, 2), 1

2

(
10 ± 10

2
√

3

)
if

(λ, µ) = (1, 3) and 1
2

(
10 ± 30

2
√

5

)
if (λ, µ) = (0, 4).

For n ∈ {12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25} we find that there is only one
nonnegative solution (λ, µ) = (4, 0) of the corresponding Diophantine equation:
5λ + (n − 6)µ = 20. Since µ = 0, according to Proposition 4.4, G is disconnected.

If G = SRG(16, 5, λ, µ) the corresponding Diophantine equation is: 5λ + 10µ =
20, so the set of its nonnegative solutions is (λ, µ) ∈ {(4, 0), (2, 1), (0, 2)}. For
(λ, µ) = (4, 0) G is disconnected. For (λ, µ) = (2, 1) the corresponding eigen-

value multiplicities are not integers, i.e. 1
2

(
15 ± −25

√
17

)
. For (λ, µ) = (0, 2), we have

G = SRG(16, 5, 0, 2) = CC.
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For G = SRG(21, 5, λ, µ) the corresponding Diophantine equation is: 5λ+15µ =
20, and its nonnegative solutions are (λ, µ) = (4, 0) and (λ, µ) = (1, 1). In the first
case, G is disconnected, while in the second case, the values of the eigenvalue
multiplicities are 40±5

4 .
And, in the last case, if G = SRG(26, 5, λ, µ), the nonnegative solutions of

the corresponding Diophantine equation: 5λ + 20µ = 20 are (λ, µ) = (4, 0) and
(λ, µ) = (0, 1). In the former case, G is disconnected, while in the later case the

values of the corresponding eigenvalue multiplicities are 1
2

(
25 ± 15

√
17

)
.

From the considered cases, we conclude that only SRG(16, 5, 0, 2) can be a
strongly regular graph with the degree equal to 5. One such graph is CC. From
the theory of graphs with the least eigenvalue at least −2 (see [9], Theorem 4.3.6)
we know that the Clebsh graph has no cospectral mates. Hence, CC also has no
cospectral mates.

It would be interesting to analyze for CC the load balancing algorithm de-
scribed in [6].

Recall that L(G) is the line graph of a graph G (for details see [7] or [8]). The
following statement can be proved in the similar fashion like the previous one:

Proposition 4.6. The graph L(K3,3) is the unique strongly regular graph of degree r = 4.

Proof. Let us suppose that G = SRG(n, 4, λ, µ) is a connected strongly regular
graph of degree r = 4. According to (3), we find 5 ≤ n ≤ 17. We will analyze
G = SRG(n, 4, λ, µ) for all possible values of n.

If G = SRG(5, 4, λ, µ), then G is the complete graph with 5 vertices, and thus
its spectrum consists of just two distinct eigenvalues, which means that G is not
strongly regular graph.

If G = SRG(6, 4, λ, µ), then we have the following Diophantine equation:
4λ + µ = 12. All possible nonnegative solutions of this equation are (λ, µ) ∈
{(0, 12), (1, 8), (2, 4), (3, 0)}. Since G is a graph with 6 vertices, we need to consider
only the cases when (λ, µ) = (2, 4) and (λ, µ) = (3, 0). For G = SRG(6, 4, 2, 4) we
calculate that the multiplicities of the corresponding eigenvalues are equal to 3
and 2, so the absolute bound is not satisfied, i.e. we have 6 ≤ 2 · (2 + 3)/2 = 5.
If G = SRG(6, 4, 3, 0), G is disconnected, which is in the contradiction with our
assumption.

We can analyze all the remain cases in the similar way. Namely, for G =
SRG(7, 4, λ, µ) the corresponding Diophantine equation is: 4λ + 2µ = 12, i.e.
2λ+ µ = 6, and its nonnegative solutions are (λ, µ) ∈ {(0, 6), (1, 4), (2, 2), (3, 0)}. For
(λ, µ) = (3, 0), G is disconnected. For (λ, µ) = (0, 6) the corresponding eigenvalue
multiplicities are not integers, i.e. they are equal to 3 ±

√
7. The similar situation

is in the case when (λ, µ) = (1, 4) and (λ, µ) = (2, 2), when the values of the
corresponding eigenvalue multiplicities are 3 ± 5

3 and 3 ±
√

2, respectively.
In the case when n ∈ {8, 11, 17} we find that the corresponding Diophantine

equation 4λ + (n − 5)µ = 12 has just two nonnegative solutions, one of which
is equal to (λ, µ) = (3, 0), which means that G = SRG(n, 4, λ, µ) is disconnected.
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The second solution is of the form (0,n − i2) for (n, i) ∈ {(8, 2), (11, 3), (17, 4)}. For
G = SRG(8, 4, 0, 4), the values of the corresponding eigenvalue multiplicities are
6 and 1, so the absolute bound is not satisfied, i.e. we have 8 ≤ 1 · (1 + 3)/2 = 2.
For G = SRG(11, 4, 0, 2) and G = SRG(17, 4, 0, 1) the corresponding eigenvalue
multiplicities are not integers, i.e. they are equal to 5±

√
3 and 8± 4

√
13

, respectively.
If G = SRG(9, 4, λ, µ), the corresponding Diophantine equation is: λ+µ = 3. Its

nonnegative solutions are: (λ, µ) ∈ {(3, 0), (2, 1), (1, 2), (0, 3)}. For (λ, µ) = (3, 0), G is
disconnected. In the cases G = SRG(9, 4, 2, 1) and G = SRG(9, 4, 0, 3), the values of
the corresponding eigenvalue multiplicities are 4± 8

√
13

. And, for G = SRG(9, 4, 1, 2)
we have that G = L(K3,3).

For n ∈ {10, 12, 14, 15, 16}, we find that the corresponding Diophantine equa-
tion 4λ+ (n− 5)µ = 12 has unique nonnegative solution of the form (λ, µ) = (3, 0),
which means that G is disconnected.

And finally, in the case when G = SRG(13, 4, λ, µ), the corresponding Dio-
phantine equation is: λ + 2µ = 6, and its nonnegative solutions are (λ, µ) ∈
{(6, 0), (4, 1), (2, 2), (0, 3)}. In the case G = SRG(13, 4, 6, 0), G is disconnected. For
G = SRG(13, 4, 4, 1), G = SRG(13, 4, 2, 2) and G = SRG(13, 4, 0, 3), the values of the
corresponding eigenvalue multiplicities are 6± 22

√
21

, 6±
√

2 and 6± 14
√

13
, respectively.

From the considered cases, we conclude that only SRG(9, 4, 1, 2) can be a the
strongly regular graph with the degree equal to 4. One such graph is L(K3,3). From
the theory of graphs with the least eigenvalue at least −2 (see [9], Theorem 2.6.2)
we know that L(K3,3) has no cospectral mates.

Note that L(K3,3) is self-complementary.
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