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1. INTRODUCTION

The concept of convexificators was introduced by Demyanov [6]. Convexifi-
cators has been employed to extend the results in optimization and nonsmooth
analysis [14, 15, 30, 19]. It has been shown in [19] that the Clarke subdifferentials,
Michel-Penot subdifferentials, and Treiman subdifferentials of a locally Lipschitz
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real-valued function are convexificators. For recent developments and results on
convexificators, we refer to [16, 18, 17, 1] and the references therein.

A mathematical program with equilibrium constraints (MPEC) usually refers
to an optimization problem in which the essential constraints are defined by
complementarity system or a parametric variational inequality. There are many
equilibrium phenomena that arise from economics and engineering, characterized
by either a variational inequality or an optimization problem, which justifies the
name mathematical program with equilibrium constraints (MPEC) for the smooth
case [35, 10] and for the nonsmooth case [29, 28, 36]. Luo et al. [20] presented
a comprehensive study of MPEC. By using the standard Fritz-John conditions,
Flegel and Kanzow [8] obtained the optimality conditions for MPEC. Moreover,
Flegel and Kanzow [9] introduced a new Slater type constraint qualification and
a new Abadie type constraint qualification for the MPEC, and proved that the
new Slater type constraint qualification implied a new Abadie type constraint
qualification.

The class of MPEC is an extension of the class of bi-level programming prob-
lems, also known as the mathematical program with optimization constraints.
By using the notion of convexificators, Ardali et al. [2] derived optimality condi-
tions for MPEC. There are numerous real-world applications of MPEC, such as
hydro-economic river basin model [4], chemical process engineering [31], design
of transportation networks [12], and shape optimization [13].

It is well known that convexity and generalized convexity of a function play
a significant role in optimization theory. One of the important generalization of
a convex function is invex (invariant convex) function, which was introduced by
Hanson [11] and later named by Craven [5]. For the last three decades, duality
and optimality conditions in invex optimization theory have been discussed by
several authors (see [3, 25, 22, 23]). Duality results are very useful and fruitful in
the development of numerical algorithms for solving certain classes of the opti-
mization problems. The existence of duality theory in the nonlinear programming
problem helps to develop numerical algorithm as it provides suitable stopping
rules for primal and dual problems. Also, duality theory is very important sub-
ject in the study of mathematical programming problems as weak duality gives
a lower bound to the objective function of the primal problem. Wolfe [34], and
Mond and Weir [27] dual models are most popular in nonlinear programming
problems. Furthermore, these dual models have been abundantly studies for bi-
level problems [33], semi- infinite programming problems [24], and mathematical
programs with vanishing constraints (MPVC) [26].

In this paper, we derive the sufficient condition for global optimality for a
mathematical program with equilibrium constraints using generalized invexity
assumptions. We introduce Wolfe and Mond-Weir type dual programs to the
MPEC and establish weak and strong duality theorems. The organization of this
paper is as follows: in Section 2, we provide some preliminary definitions and
results. In Section 3, we derive the sufficient optimality condition for MPEC,
under generalized invexity assumptions. In Section 4, we establish weak and
strong duality theorems relating to the MPEC and two dual models using invex
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function and generalized invex functions in the framework of convexificators. In
Section 5, we conclude the results of this paper.

2. PRELIMINARIES

Throughout this paper, Rn denotes the n-dimensional Euclidean space with
inner product 〈, ., 〉 and C is a nonempty subset of Rn. The convex hull of C is
denoted by co C.

We consider the MPEC in the following form:

MPEC min F(u)
subject to : 1(u) ≤ 0, h(u) = 0,

θ(u) ≥ 0, ψ(u) ≥ 0, 〈θ(u), ψ(u)〉 = 0,

where F : Rn
→ R, 1 : Rn

→ Rk, h : Rn
→ Rp, θ : Rn

→ Rl and ψ : Rn
→

Rl are given functions. If we take h(u) := 0, θ(u) := 0, ψ(u) := 0, then, the
optimization problem with equilibrium constraint coincides with the standard
nonlinear programming problem, which is well studied in the literature, see e.g.,
Mangasarian [21].

The feasible set of the problem MPEC is denoted by X and defined by

X := {u ∈ Rn : 1(u) ≤ 0, h(u) = 0, θ(u) ≥ 0, ψ(u) ≥ 0, 〈θ(u), ψ(u)〉 = 0}.

The following index sets will be used throughout the paper:

I1 := I1(ũ) := {i = 1, 2, . . . , k : 1i(ũ) = 0},
δ := δ(ũ) := {i = 1, 2, . . . , l : θi(ũ) = 0, ψi(ũ) > 0},
ω := ω(ũ) := {i = 1, 2, . . . , l : θi(ũ) = 0, ψi(ũ) = 0},
κ := κ(ũ) := {i = 1, 2, . . . , l : θi(ũ) > 0, ψi(ũ) = 0},

where ũ ∈ X is a feasible vector for the problem MPEC and the set ω denotes the
degenerate set.

Definition 2.1. Let F : Rn
→ R ∪ {+∞} be an extended real-valued function, u ∈ Rn,

and let F(u) be finite. Then, the lower and upper Dini directional derivatives of F at u in
the direction y are defined, respectively, by

F−d (u, y) := lim inf
t→0+

F(u + ty) − F(u)
t

,

and

F+
d (u, y) := lim sup

t→0+

F(u + ty) − F(u)
t

.

Definition 2.2. (see [14]) A function F : Rn
→ R∪ {+∞} is said to have upper convex-

ificators, ∂∗F(u) at u ∈ Rn if ∂∗F(u) ⊆ Rn is a closed set and, for each y ∈ Rn,

F−d (u, y) ≤ sup
ξ∈∂∗F(u)

〈
ξ, y

〉
.
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Definition 2.3. (see [14]) A function F : Rn
→ R ∪ {+∞} is said to have lower convex-

ificators, ∂∗F(u) at u ∈ Rn if ∂∗F(u) ⊆ Rn is a closed set and, for each y ∈ Rn,

F+
d (u, y) ≥ inf

ξ∈∂∗F(u)

〈
ξ, y

〉
.

The function F is said to have a convexificator ∂∗F(u) ⊆ Rn at u ∈ Rn, iff ∂∗F(u) is
both upper and lower convexificators of F at u.

Definition 2.4. (see [7]) A function F : Rn
→ R ∪ {+∞} is said to have upper semi-

regular convexificators, ∂∗F(u) at u ∈ Rn if ∂∗F(u) ⊆ Rn is a closed set and, for each
y ∈ Rn

F+
d (u, y) ≤ sup

ξ∈∂∗F(u)

〈
ξ, y

〉
. (1)

Based on the definitions of an invex function [23] and generalized invex functions
[32], we are introducing the definition of invex function and generalized invex
functions in terms of convexificators.

Definition 2.5. Let F : Rn
→ R ∪ {+∞} be an extended real valued function, which

admit convexificator at ũ ∈ Rn and η : Rn
×Rn

→ Rn be a kernel function then, f is said
to be
(i) ∂∗-invex at ũ with respect to η if for every u ∈ Rn,

F(u) ≥ F(ũ) + 〈ξ, η(u, ũ)〉,∀ ξ ∈ ∂∗F(ũ).

(ii) ∂∗-pseudoinvex at ũ with respect to η if for every u ∈ Rn,

∃ ξ ∈ ∂∗F(ũ), 〈ξ, η(u, ũ)〉 ≥ 0⇒ F(u) ≥ F(ũ).

(iii) ∂∗-quasiinvex at ũ with respect to η if for every u ∈ Rn,

F(u) ≤ F(ũ)⇒ 〈ξ, η(u, ũ)〉 ≤ 0,∀ ξ ∈ ∂∗F(ũ).

We provide following examples in support of the definition of ∂∗-invex func-
tion and generalized ∂∗-invex functions respectively.
Example 2.1 Consider the function F : R → R is given by F(u) = |u|, if we take
point ũ = 0, then the function becomes ∂∗-invex function at ũ = 0 with respect to
the kernel function, η(u, ũ) = cos u sin ũ and ∂∗F(0) = {−1, 1}.

Example 2.2 Consider the function F : R → R is given by F(u) = |u|, if we take
point ũ = 0, then the function becomes ∂∗-pseudoinvex function at ũ = 0 with
respect to the kernel function, η(u, ũ) = sin uũ and ∂∗F(0) = {−1, 1}.

Example 2.3 Consider the function F : R → R is given by F(u) = sin u, if we
take point ũ = π

2 , then the function becomes ∂∗-quasiinvex function at ũ = π
2 with

respect to the kernel function, η(u, ũ) = cos u sin ũ and ∂∗F(π2 ) = {0}.

The following definitions of a generalized alternatively stationary point and a
generalized strong stationary point are taken from Ardali et.al. [2].
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Definition 2.6. A feasible point ũ of MPEC is called a generalized alternatively sta-
tionary (GA-stationary) point if there are vectors τ = (τ1, τh, τθ, τψ) ∈ Rk+p+2l and
γ = (γh, γθ, γψ) ∈ Rp+2l satisfying the following conditions

0 ∈ co∂∗F(ũ) +
∑
i∈I1

τ1i co∂∗1i(ũ) +

p∑
m=1

[
τh

mco∂∗hm(ũ) + γh
mco∂∗(−hm)(ũ)

]
+

l∑
i=1

[
τθi co∂∗(−θi)(ũ) + τ

ψ
i co∂∗(−ψi)(ũ)

]
+

l∑
i=1

[
γθi co∂∗(θi)(ũ) + γ

ψ
i co∂∗(ψi)(ũ)

]
, (2)

τ1I1 ≥ 0, τh
m, γ

h
m ≥ 0, m = 1, 2, . . . , p, (3)

τθi , τ
ψ
i , γ

θ
i , γ

ψ
i ≥ 0, i = 1, 2, . . . , l, (4)

τθκ = τ
ψ
δ = γθκ = γ

ψ
δ = 0, (5)

∀ i ∈ ω, γθi = 0 or γΨ
i = 0. (6)

Definition 2.7. A feasible point ũ of MPEC is called a generalized strong stationary (GS-
stationary) point if there are vectors τ = (τ1, τh, τθ, τψ) ∈ Rk+p+2l and γ = (γh, γθ, γψ) ∈
Rp+2l satisfying (2)-(5) together with the following condition

∀ i ∈ ω, γθi = 0, γΨ
i = 0.

In the next section, we show that under certain MPEC generalized invex-
ity assumptions, generalized alternatively (GA) -stationarity turns into a global
sufficient optimality condition.

3. OPTIMALITY CONDITION

We consider the following index sets:

ωθγ := {i ∈ ω : γψi = 0, γθi > 0},

ω
ψ
γ := {i ∈ ω : γψi > 0, γθi = 0},

δ+
γ := {i ∈ δ : γθi > 0},

κ+
γ := {i ∈ κ : γψi > 0}.

Theorem 3.1. Let ũ be a feasible GA-stationary point of MPEC, assume that F is ∂∗-
pseudoinvex at ũ with respect to the kernel η and 1i(i ∈ I1),±hm(m = 1, 2, . . . , p),−θi(i ∈
δ ∪ ω),−ψi(i ∈ ω ∪ κ) are ∂∗-quasiinvex at ũ with respect to the common kernel η. If
ωθγ ∪ ω

ψ
γ ∪ δ

+
γ ∪ κ

+
γ = φ, then ũ is a global optimal solution of MPEC.

Proof. Let u be any arbitrary feasible point of MPEC, i.e.,

1i(u) ≤ 0 = 1i(ũ), ∀ i ∈ I1.
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By ∂∗-quasiinvexity of 1i at ũ, we get

〈ξ1i , η(u, ũ)〉 ≤ 0, ∀ ξ1i ∈ ∂
∗1i(ũ), ∀ i ∈ I1. (7)

Similarly, we have〈
ζm, η(u, ũ)

〉
≤ 0, ∀ ζm ∈ ∂

∗hm(ũ),∀ m = {1, 2, . . . , p}, (8)〈
νm, η(u, ũ)

〉
≤ 0, ∀ νm ∈ ∂

∗(−hm)(ũ),∀ m = {1, 2, . . . , p}, (9)〈
ξθi , η(u, ũ)

〉
≤ 0,∀ ξθi ∈ ∂

∗(−θi)(ũ),∀ i ∈ δ ∪ ω, (10)〈
ξΨ

i , η(u, ũ)
〉
≤ 0,∀ ξΨ

i ∈ ∂
∗(−Ψi)(ũ),∀ i ∈ ω ∪ κ. (11)

If ωθγ ∪ ωΨ
γ ∪ δ

+
γ ∪ κ

+
γ = φ, multiplying (7)-(11) by τ1i ≥ 0 (i ∈ I1), τh

m > 0 (m =

1, 2, . . . , p), γh
m > 0 (m = 1, 2, . . . , p), τθi > 0 (i ∈ δ ∪ ω), τΨ

i > 0 (i ∈ ω ∪ κ),
respectively and adding, we obtain〈 ∑

i∈I1

τ1i ξ
1

i +

p∑
m=1

[
τh

mζm + γh
mνm

]
+

l∑
i=1

τθi ξ
θ
i +

l∑
i=1

τΨ
i ξ

Ψ
i

 , η(u, ũ)
〉
≤ 0,

for all ξ1i ∈ co∂∗1i(ũ), ζm ∈ co∂∗hm(ũ), νm ∈ co∂∗(−hm)(ũ), ξθi ∈ co∂∗(−θi)(ũ) and
ξΨ

i ∈ co∂∗(−Ψi)(ũ). Thus by GA-stationarity of ũ, we can select ξ ∈ co∂∗F(ũ), so
that,

〈ξ, η(u, ũ)〉 ≥ 0.

By ∂∗-pseudoinvexity of F at ũ with respect to the common kernel η, we get
F(u) ≥ F(ũ) for all feasible points u. Hence ũ is a global optimal solution of
MPEC.

The following example illustrates Theorem 3.1.
Example 3.1 Consider the following MPEC problem

MPEC min F(u) = |u|
subject to : 1(u) = −u2

≤ 0,
θ(u) = u2

≥ 0,
Ψ(u) = |u| ≥ 0,
〈θ(u),Ψ(u)〉 = 〈u2, |u|〉 = 0.

Here F(u) = |u| is ∂∗-pseudoinvex at ũ = 0 with respect to the kernel, η(u.ũ) =
euũ. Further, 1,−θ and−Ψ are ∂∗-quasiinvex at ũ = 0 with respect to the common
kernel, η(u, ũ) = euũ. The feasible point for the given MPEC is ũ = 0. We have
co∂∗F(0) = [−1, 1], co∂∗1(0) = {0}, co∂∗(−θ)(0) = {0} and co∂∗(−Ψ)(0) = [−1, 1]. One
can easily verify that there exist τ1 = 1, τθ = 1, and τΨ = 1 such that ũ = 0 is a
GA- stationary point, and ũ = 0 is a global optimal solution for the given primal
problem MPEC. Hence, the assumptions of the Theorem 3.1 are satisfied.

Remark 3.2. Based on the Definition 2.5, the definitions of an invex function and gen-
eralized invex functions can also be given in terms of upper semi-regular convexificators.
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4. DUALITY

In this section, we formulate and study a Wolfe type dual problem for the
problem MPEC using the ∂∗-invexity. We also formulate Mond-Weir type dual
problem and study the problem MPEC using ∂∗-invexity and generalized ∂∗-
invexity assumptions.

The formulation of Wolfe type dual problem for the problem MPEC is as
follows:

WD max
v,τ

F(v) +
∑
i∈I1

τ1i 1i(v) +

p∑
m=1

ρh
mhm(v) −

l∑
i=1

[
τθi θi(v) + τ

ψ
i ψi(v)

]
subject to :

0 ∈ co∂∗F(v) +
∑
i∈I1

τ1i co∂∗1i(v) +

p∑
m=1

[
τh

mco∂∗hm(v) + γh
mco∂∗(−hm)(v)

]
+

l∑
i=1

[
τθi co∂∗(−θi)(v) + τ

ψ
i co∂∗(−ψi)(v)

]
,

τ1I1 ≥ 0, τh
m, γ

h
m ≥ 0, m = 1, 2, . . . , p,

τθi , τ
ψ
i , γ

θ
i , γ

ψ
i ≥ 0, i = 1, 2, . . . , l,

τθκ = τ
ψ
δ = γθκ = γ

ψ
δ = 0, ∀ i ∈ ω, γθi = 0, γψi = 0, (12)

where,

ρh
m = τh

m − γ
h
m, τ = (τ1, τh, τθ, τψ) ∈ Rk+p+2l and γ = (γh, γθ, γψ) ∈ Rp+2l.

Theorem 4.1. (Weak Duality) Let ũ be feasible for the problem MPEC, (v, τ) be feasible
for the dual WD and the index sets I1, δ, ω, κ are defined accordingly. Suppose that
F, 1i (i ∈ I1), ±hm (m = 1, 2, . . . , p), −θi (i ∈ δ ∪ ω), −ψi (i ∈ ω ∪ κ) admit bounded
upper semi-regular convexificators and are ∂∗-invex functions at v, with respect to the
common kernel η. If ωθγ ∪ ω

ψ
γ ∪ δ

+
γ ∪ κ

+
γ = φ, then for any u feasible for the problem

MPEC, we have

F(u) ≥ F(v) +
∑
i∈I1

τ1i 1i(v) +

p∑
m=1

ρh
mhm(v) −

l∑
i=1

[
τθi θi(v) + τ

ψ
i ψi(v)

]
.

Proof. Let us suppose that u is any feasible point for the problem MPEC. Then,
we have

1i(u) ≤ 0, ∀ i ∈ I1 and hm(u) = 0, ∀ m = {1, 2, . . . , p}.

Since F is invex at v, with respect to the kernel η, then, it follows that

F(u) − F(v) ≥ 〈ξ, η(u, v)〉,∀ ξ ∈ ∂∗F(v). (13)
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Similarly, we have

1i(u) − 1i(v) ≥ 〈ξ1i , η(u, v)〉, ∀ ξ1i ∈ ∂
∗1i(v),∀ i ∈ I1, (14)

hm(u) − hm(v) ≥ 〈ζm, η(u, v)〉, ∀ ζm ∈ ∂
∗hm(v),∀ m = {1, 2, . . . , p}, (15)

−hm(u) + hm(v) ≥ 〈νm, η(u, v)〉, ∀ νm ∈ ∂
∗(−hm)(v),∀ m = {1, 2, . . . , p}, (16)

−θi(u) + θi(v) ≥ 〈ξθi , η(u, v)〉, ∀ ξθi ∈ ∂
∗(−θi)(v),∀ i ∈ δ ∪ ω, (17)

−ψi(u) + ψi(v) ≥ 〈ξψi , η(u, v)〉, ∀ ξψi ∈ ∂
∗(−ψi)(v),∀ i ∈ ω ∪ κ. (18)

If ωθγ ∪ ω
ψ
γ ∪ δ

+
γ ∪ κ

+
γ = φ, then multiplying (14)-(18) by τ1i ≥ 0 (i ∈ I1), τh

m >

0 (m = 1, 2, . . . , p), γh
m > 0 (m = 1, 2, . . . , p), τθi > 0 (i ∈ δ ∪ ω), τψi > 0 (i ∈ ω ∪ κ),

respectively and adding (13)- (18), we obtain

F(u) − F(v) +
∑
i∈I1

τ1i 1i(u) −
∑
i∈I1

τ1i 1i(v) +

p∑
m=1

τh
mhm(u) −

p∑
m=1

τh
mhm(v) −

p∑
m=1

γh
mhm(u)

+

p∑
m=1

γh
mhm(v) −

l∑
i=1

τθi θi(u) +

l∑
i=1

τθi θi(v) −
l∑

i=1

τ
ψ
i ψi(u) +

l∑
i=1

τ
ψ
i ψi(v)

≥

〈
ξ +

∑
i∈I1

τ1i ξ
1

i +

p∑
m=1

[
τh

mζm + γh
mνm

]
+

l∑
i=1

[
τθi ξ

θ
i + τ

ψ
i ξ

ψ
i

]
, η(u, v)

〉
.

From (2), ∃ ξ̃ ∈ co∂∗F(v), ξ̃1i ∈ co∂∗1i(v), ζ̃m ∈ co∂∗hm(v), ν̃m ∈ co∂∗(−hm)(v), ξ̃θi ∈
co∂∗(−θi)(v) and ξ̃ψi ∈ co∂∗(−ψi)(v), such that

ξ̃ +
∑
i∈I1

τ1i ξ̃
1

i +

p∑
m=1

[
τh

mζ̃m + γh
mν̃m

]
+

l∑
i=1

[
τθi ξ̃

θ
i + τ

ψ
i ξ̃

ψ
i

]
= 0.

Therefore,

F(u) − F(v) +
∑
i∈I1

τ1i 1i(u) −
∑
i∈I1

τ1i 1i(v) +

p∑
m=1

τh
mhm(u) −

p∑
m=1

τh
mhm(v) −

p∑
m=1

γh
mhm(u)

+

p∑
m=1

γh
mhm(v) −

l∑
i=1

τθi θi(u) +

l∑
i=1

τθi θi(v) −
l∑

i=1

τ
ψ
i ψi(u) +

l∑
i=1

τ
ψ
i ψi(v) ≥ 0.

Now, using feasibility condition of MPEC, i.e, 1i(u) ≤ 0, hm(u) = 0, θi(u) ≥
0, ψi(u) ≥ 0, it follows that

F(u) − F(v) −
∑
i∈I1

τ1i 1i(v) −
p∑

m=1

τh
mhm(v) +

p∑
m=1

γh
mhm(v) +

l∑
i=1

τθi θi(v) +

l∑
i=1

τ
ψ
i ψi(v) ≥ 0.
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Hence,

F(u) ≥ F(v) +
∑
i∈I1

τ1i 1i(v) +

p∑
m=1

ρh
mhm(v) −

l∑
i=1

[
τθi θi(v) + τ

ψ
i ψi(v)

]
,

where, ρh
m = τh

m − γ
h
m, and the proof is completed.

Theorem 4.2. (Strong Duality) Let ũ be a local optimal solution of the problem MPEC
and assume that F is locally Lipschitz near ũ. Suppose that F, 1i (i ∈ I1), ±hm (m =
1, 2, . . . , p),−θi (i ∈ δ ∪ ω),−ψi (i ∈ ω ∪ κ) admit bounded upper semi-regular convexi-
ficators and are ∂∗-invex functions at ũ with respect to the common kernel η. If GS-ACQ
[2] holds at ũ, then, ∃ τ̃ = (τ̃1, τ̃h, τ̃θ, τ̃ψ) ∈ Rk+p+2l, such that (ũ, τ̃) is an optimal solution
of the dual WD and the corresponding objective values of MPEC and WD are equal.

Proof. Since ũ is a local optimal solution of the problem MPEC and the GS-ACQ is
satisfied at ũ,now, using Corollary 4.6[2], i.e.,∃ τ̃ = (τ̃1, τ̃h, τ̃θ, τ̃ψ) ∈ Rk+p+2l and γ̃ ∈
(γ̃h, γ̃θ, γ̃ψ) ∈ Rp+2l, such that the GS-stationarity conditions for the problem MPEC
are satisfied, it follows that ∃ ξ̃ ∈ co∂∗F(ũ), ξ̃1i ∈ co∂∗1i(ũ), ζ̃m ∈ co∂∗hm(ũ), ν̃m ∈

co∂∗(−hm)(ũ), ξ̃θi ∈ co∂∗(−θi)(ũ) and ξ̃ψi ∈ co∂∗(−ψi)(ũ), such that

ξ̃ +
∑
i∈I1

τ̃1i ξ̃
1

i +

p∑
m=1

[
τ̃h

mζ̃m + γ̃h
mν̃m

]
+

l∑
i=1

[
τ̃θi ξ̃

θ
i + τ̃

ψ
i ξ̃

ψ
i

]
= 0,

τ̃1I1 ≥ 0, τ̃h
m, γ̃

h
m ≥ 0, m = 1, 2, . . . , p,

τ̃θi , τ̃
ψ
i , γ̃

θ
i , γ̃

ψ
i ≥ 0, i = 1, 2, . . . , l,

τ̃θκ = τ̃
ψ
δ = γ̃θκ = γ̃

ψ
δ = 0,∀ i ∈ ω, γ̃θi = 0, γ̃ψi = 0.

Therefore (ũ, τ̃) is feasible for the dual WD. Now, using Theorem 4.1, we obtain

F(ũ) ≥ F(v) +
∑
i∈I1

τ1i 1i(v) +

p∑
m=1

ρh
mhm(v) −

l∑
i=1

[
τθi θi(v) + τ

ψ
i ψi(v)

]
, (19)

where, ρh
m = τh

m − γ
h
m, for any feasible solution (v, τ) for the dual WD. Using the

feasibility condition of MPEC and its dual WD, i.e., for i ∈ I1(ũ), 1i(ũ) = 0, hm(ũ) =
0, (m = 1, 2, . . . , p), θi(ũ) = 0,∀i ∈ δ ∪ ω, and ψi(ũ) = 0,∀i ∈ ω ∪ κ, we get

F(ũ) = F(ũ) +
∑
i∈I1

τ̃1i 1i(ũ) +

p∑
m=1

ρ̃h
mhm(ũ) −

l∑
i=1

[
τ̃θi θi(ũ) + τ̃

ψ
i ψi(ũ)

]
, (20)
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where, ρ̃h
m = τ̃h

m − γ̃
h
m. Using (19) and (20), we obtain

F(ũ) +
∑
i∈I1

τ̃1i 1i(ũ) +

p∑
m=1

ρ̃h
mhm(ũ) −

l∑
i=1

[
τ̃θi θi(ũ) + τ̃

ψ
i ψi(ũ)

]
≥ F(v) +

∑
i∈I1

τ1i 1i(v) +

p∑
m=1

ρh
mhm(v) −

l∑
i=1

[
τθi θi(v) + τ

ψ
i ψi(v)

]
.

Hence, (ũ, τ̃) is an optimal solution for the dual WD and the corresponding objec-
tive values of MPEC and WD are equal.

Now, we formulate the Mond-Weir type dual problem (MWD) for the problem
MPEC and establish duality theorems using convexificators.

MWD max
v,τ
{F(v)}

subject to:

0 ∈ co∂∗F(v) +
∑
i∈I1

τ1i co∂∗1i(v) +

p∑
m=1

[
τh

mco∂∗hm(v) + γh
mco∂∗(−hm)(v)

]
+

l∑
i=1

[
τθi co∂∗(−θi)(v) + τ

ψ
i co∂∗(−ψi)(v)

]
,

1i(v) ≥ 0 (i ∈ I1), hm(v) = 0 (m = 1, 2, . . . , p),
θi(v) ≤ 0 (i ∈ δ ∪ ω), ψi(v) ≤ 0 (i ∈ ω ∪ κ),

τ1I1 ≥ 0, τh
m, γ

h
m ≥ 0, m = 1, 2, . . . , p,

τθi , τ
ψ
i , γ

θ
i , γ

ψ
i ≥ 0, i = 1, 2, . . . , l,

τθκ = τ
ψ
δ = γθκ = γ

ψ
δ = 0,∀ i ∈ ω, γθi = 0, γψi = 0, (21)

where, τ = (τ1, τh, τθ, τψ) ∈ Rk+p+2l and γ = (γh, γθ, γψ) ∈ Rp+2l.

Theorem 4.3. (Weak Duality) Let ũ be feasible for the problem MPEC, (v, τ) be feasible
for the dual MWD and the index sets I1, δ, ω, κ be defined accordingly. Suppose that
F, 1i (i ∈ I1),±hm (m = 1, 2, . . . , p),−θi (i ∈ δ∪ω),−ψi (i ∈ ω∪κ) admit bounded upper
semi-regular convexificators and are ∂∗-invex functions at v, with respect to the common
kernel η. If ωθγ ∪ ω

ψ
γ ∪ δ

+
γ ∪ κ

+
γ = φ, then for any u feasible for the problem MPEC, we

have
F(u) ≥ F(v).

Proof. Since f is invex at v, with respect to the kernel η, then, we have

F(u) − F(v) ≥
〈
ξ, η(u, v)

〉
,∀ ξ ∈ ∂∗F(v). (22)
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Similarly, we have

1i(u) − 1i(v) ≥ 〈ξ1i , η(u, v)〉, ∀ ξ1i ∈ ∂
∗1i(v),∀ i ∈ I1, (23)

hm(u) − hm(v) ≥ 〈ζm, η(u, v)〉, ∀ ζm ∈ ∂
∗hm(v),∀ m = {1, 2, . . . , p}, (24)

−hm(u) + hm(v) ≥ 〈νm, η(u, v)〉, ∀ νm ∈ ∂
∗(−hm)(v),∀ m = {1, 2, . . . , p}, (25)

−θi(u) + θi(v) ≥ 〈ξθi , η(u, v)〉, ∀ ξθi ∈ ∂
∗(−θi)(v),∀ i ∈ δ ∪ ω, (26)

−ψi(u) + ψi(v) ≥ 〈ξψi , η(u, v)〉, ∀ ξ
ψ
i ∈ ∂

∗(−ψi)(v),∀ i ∈ ω ∪ κ. (27)

If ωθγ ∪ ω
ψ
γ ∪ δ

+
γ ∪ κ

+
γ = φ, multiplying (23)-(27) by τ1i ≥ 0 (i ∈ I1), τh

m > 0 (m =

1, 2, . . . , p), γh
m > 0 (m = 1, 2, . . . , p), τθi > 0 (i ∈ δ∪ω), τψi > 0 (i ∈ ω∪κ), respectively

and adding (22)-(27), we obtain

F(u) − F(v) +
∑
i∈I1

τ1i 1i(u) −
∑
i∈I1

τ1i 1i(v) +

p∑
m=1

τh
mhm(u) −

p∑
m=1

τh
mhm(v) −

p∑
m=1

γh
mhm(u)

+

p∑
m=1

γh
mhm(v) −

l∑
i=1

τθi θi(u) +

l∑
i=1

τθi θi(v) −
l∑

i=1

τ
ψ
i ψi(u) +

l∑
i=1

τ
ψ
i ψi(v)

≥

〈
ξ +

∑
i∈I1

τ1i ξ
1

i +

p∑
m=1

[
τh

mζm + γh
mνm

]
+

l∑
i=1

[
τθi ξ

θ
i + τ

ψ
i ξ

ψ
i

]
, η(u, v)

〉
.

From (21), ∃ ξ̃ ∈ co∂∗F(v), ξ̃1i ∈ co∂∗1i(v), ζ̃m ∈ co∂∗hm(v), ν̃m ∈ co∂∗(−hm)(v), ξ̃θi ∈
co∂∗(−θi)(v) and ξ̃ψi ∈ co∂∗(−ψi)(v), such that

ξ̃ +
∑
i∈I1

τ1i ξ̃
1

i +

p∑
m=1

[
τh

mζ̃m + γh
mν̃m

]
+

l∑
i=1

[
τθi ξ̃

θ
i + τ

ψ
i ξ̃

ψ
i

]
= 0.

Therefore,

F(u) − F(v) +
∑
i∈I1

τ1i 1i(u) −
∑
i∈I1

τ1i 1i(v) +

p∑
m=1

τh
mhm(u) −

p∑
m=1

τh
mhm(v) −

p∑
m=1

γh
mhm(u)

+

p∑
m=1

γh
mhm(v) −

l∑
i=1

τθi θi(u) +

l∑
i=1

τθi θi(v) −
l∑

i=1

τ
ψ
i ψi(u) +

l∑
i=1

τ
ψ
i ψi(v) ≥ 0.

Now using the feasibility of u and v for MPEC and MWD, it follows that

F(u) ≥ F(v).

Hence, the proof is completed.
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Theorem 4.4. (Strong Duality) Let ũ be a local optimal solution of the problem MPEC
and let F be locally Lipschitz near ũ. Suppose that F, 1i (i ∈ I1), ±hm (m = 1, 2, . . . , p), −θi (i ∈
δ∪ω), −ψi (i ∈ ω∪κ) admit bounded upper semi-regular convexificators and are ∂∗-invex
functions at ũ with respect to the common kernel η. If GS-ACQ [2] holds at ũ, then there
exists τ̃, such that (ũ, τ̃) is an optimal solution of the dual MWD and the corresponding
objective values of MPEC and MWD are equal.

Proof. The proof can be done similar to the proof of Theorem 4.2 by invoking
Theorem 4.3.

Next, we establish weak duality and strong duality theorems for MPEC and
its Mond-Weir type dual problem (MWD) under the assumptions of generalized
∂∗-invexity.

Theorem 4.5. (Weak Duality) Let ũ be feasible for the problem MPEC, (v, τ) be feasi-
ble for the dual MWD and the index sets I1, δ, ω, κ are defined accordingly. Suppose
that F is ∂∗-pseudoinvex at v, with respect to the kernel η and 1i (i ∈ I1), ±hm (m =
1, 2, . . . , p), −θi (i ∈ δ ∪ ω), −ψi (i ∈ ω ∪ κ) admit bounded upper semi-regular con-
vexificators and are ∂∗-quasiinvex functions at v, with respect to the common kernel η. If
ωθγ ∪ ω

ψ
γ ∪ δ

+
γ ∪ κ

+
γ = φ, then for any u feasible for the problem MPEC, we have

F(u) ≥ F(v).

Proof. Assume that, for some feasible point u, such that F(u) < F(v), then by
∂∗-pseudoinvexity of F at v, with respect to the kernel η, we get

〈ξ, η(u, v)〉 < 0,∀ ξ ∈ ∂∗F(v). (28)

From (21), ∃ ξ̃ ∈ co∂∗F(v), ξ̃1i ∈ co∂∗1i(v), ζ̃m ∈ co∂∗hm(v), ν̃m ∈ co∂∗(−hm)(v), ξ̃θi ∈
co∂∗(−θi)(v) and ξ̃ψi ∈ co∂∗(−ψi)(v), such that

−

∑
i∈I1

τ1i ξ̃
1

i −

p∑
m=1

[
τh

mζ̃m + γh
mν̃m

]
−

∑
δ∪ω

τθi ξ̃
θ
i −

∑
ω∪κ

τ
ψ
i ξ̃

ψ
i ∈ ∂

∗F(v). (29)

By (28), we have〈 ∑
i∈I1

τ1i ξ̃
1

i +

p∑
m=1

[
τh

mζ̃m + γh
mν̃m

]
+

∑
δ∪ω

τθi ξ̃
θ
i +

∑
ω∪κ

τ
ψ
i ξ̃

ψ
i

 , η(u, v)
〉
> 0. (30)

For each i ∈ I1, 1i(u) ≤ 0 ≤ 1i(v). Hence, by ∂∗-quasiinvexity, we obtain〈
ξ1i , η(u, v)

〉
≤ 0,∀ ξ1i ∈ ∂

∗1i(v), ∀ i ∈ I1. (31)

Similarly, we have〈
ζm, η(u, v)

〉
≤ 0, ∀ ζm ∈ ∂

∗hm(v),∀ m = {1, 2, . . . , p}, (32)
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for any feasible point v of the dual MWD, and for every m,−hm(v) = −hm(u) = 0.
On the other hand, −θi(u) ≤ −θi(v),∀i ∈ δ∪ω, and −ψi(u) ≤ −ψi(v),∀i ∈ ω∪κ. By
∂∗- quasiinvexity, we obtain〈

νm, η(u, v)
〉
≤ 0, ∀ νm ∈ ∂

∗(−hm)(v),∀ m = {1, 2, . . . , p}, (33)〈
ξθi , η(u, v)

〉
≤ 0,∀ ξθi ∈ ∂

∗(−θi)(v),∀ i ∈ δ ∪ ω, (34)〈
ξ
ψ
i , η(u, v)

〉
≤ 0,∀ ξψi ∈ ∂

∗(−ψi)(v),∀ i ∈ ω ∪ κ. (35)

From Eqs, (31)-(35), we have〈
ξ̃1i , η(u, v)

〉
≤ 0 (i ∈ I1),

〈
ζ̃m, η(u, v)

〉
≤ 0,

〈
ν̃m, η(u, v)

〉
≤ 0 (m = {1, 2, . . . , p}),〈

ξ̃θi , η(u, v)
〉
≤ 0,∀ i ∈ δ ∪ ω,

〈
ξ̃
ψ
i , η(u, v)

〉
≤ 0,∀ i ∈ ω ∪ κ.

Since ωθγ ∪ ω
ψ
γ ∪ δ

+
γ ∪ κ

+
γ = φ, we have〈∑

i∈I1

τ1i ξ̃
1

i , η(u, v)
〉
≤ 0,

〈 p∑
m=1

[
τh

mζ̃m + γh
mγ̃m

]
, η(u, v)

〉
≤ 0,

〈∑
δ∪ω

τθi ξ̃
θ
i , η(u, v)

〉
≤ 0,

〈∑
ω∪κ

τ
ψ
i ξ̃

ψ
i , η(u, v)

〉
≤ 0.

Therefore,〈 ∑
i∈I1

τ1i ξ̃
1

i +

p∑
m=1

[
τh

mζ̃m + γh
mν̃m

]
+

∑
δ∪ω

τθi ξ̃
θ
i +

∑
ω∪κ

τ
ψ
i ξ̃

ψ
i

 , η(u, v)
〉
≤ 0.

which contradicts (30). Therefore F(u) ≥ F(v). Hence the proof is completed.

Theorem 4.6. (Strong Duality) Let ũ be a local optimal solution of the problem MPEC
and let F be locally Lipschitz near ũ. Suppose that F is ∂∗-pseudoinvex at ũ, with respect
to the kernel η, 1i (i ∈ I1), ±hm (m = 1, 2, . . . , p), −θi (i ∈ δ ∪ ω), −ψi (i ∈ ω ∪ κ)
admit bounded upper semi-regular convexificators and are ∂∗-quasiinvex functions at ũ
with respect to the common kernel η. If GS-ACQ [2] holds at ũ, then there exists τ̃, such
that (ũ, τ̃) is an optimal solution of the dual MWD and the respective objective values are
equal.

Proof. The proof can be done similar to the proof of Theorem 4.2 by invoking
Theorem 4.5.



462 Joshi, et al. / On Nonsmooth Mathematical Programs

5. CONCLUSIONS

We studied a mathematical program with equilibrium constraints (MPEC) and
derived the sufficient conditions for global optimality for MPEC using general-
ized invexity assumptions. We formulated the Wolfe type and Mond-Weir type
dual models for the problem MPEC in the framework of convexificators, and
established weak and strong duality theorems relating to the problem MPEC and
two dual models using ∂∗-invexity and generalized ∂∗-invexity assumptions.
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