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Abstract: The paper presents a comparison between three approaches to solving the
length-bounded maximum multicommodity flow problem with unit edge-lengths. Follow-
ing the first approach, Garg and Könemann’s, we developed an improved fully polynomial-
time approximation scheme for this problem. As the second alternative, we considered the
well-known greedy approach. The third approach is the one that yields exact solutions by
means of a standard LP solver applied to an LP model on the time-expanded network.
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Computational experiments are carried out on benchmark graphs and the graphs that
model software defined satellite networks, to compare the proposed algorithms with an
exact linear programming solver. The results of the experiments demonstrate a trade-off
between the computing time and the precision of algorithms under consideration.

Keywords: Computational Experiment, Linear Programming, Fully Polynomial-Time Ap-
proximation Scheme, Greedy Heuristic, Software Defined Satellite Network.
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1. INTRODUCTION

Research issues in telecommunications often include requirements regarding
quality of service such as bandwidth, delay, number of hops, etc. [24, 29]. These
issues may be interpreted as combinatorial optimization problems of finding a
multicommodity flow through the network that satisfies some quality of service
constraints.

Multicommodity flow (MCF) problems are defined on a directed graph G =
(V,E) with edge capacities u : E → R and k origin-to-destination pairs (s j, t j),
j = 1, . . . , k. These problems ask for a family of flows f j from s j to t j, so that some
optimization criterion is maximized under the node flow conservation constraints
and the requirement that the sum of flows on any edge does not exceed the capacity
of the edge.

In particular, the maximum multicommodity flow problem (maximum MCF for
short) is an MCF problem where the total flow needs to be maximized. Some
authors assume that the maximum MCF also includes a constraint that the value
of each flow f j is limited by a finite demand d j, j = 1, . . . , k (see e.g. [29]).

A more general problem, called length-bounded maximum multicommodity flow
(length-bounded maximum MCF for short), asks for a maximum MCF routed along
a set of paths whose length does not exceed a specific bound. This problem was
studied in [3, 5] assuming unbounded demands and in [9], assuming that finite
demands are given. In particular, it was shown in [3] that the length-bounded
maximum MCF is NP-hard, while its special case where all edges have unit length
is polynomially solvable. An LP formulation for this special case was proposed
in [21] using a multicommodity flow in a supplementary time-expanded network.
In what follows, we will denote length-bounded maximum MCF problem by
LBMCF and its special case where all edges have unit length will be denoted by
LBMCF1. In this paper, we consider only one of the two well-known forms of the
multicommodity max-flow problem, the so called max-sum one. The other tightly
related form of this problem, called the max-concurrent version, with the objective
to satisfy the maximum possible proportion of all demands, may be found e.g.
in [4, 11, 13].

When the large-scale instances need to be solved, in view of excessive com-
putational cost, it is often more appropriate to search for approximate solutions.
A feasible solution y to a maximization problem is called a (1 − ω)-approximate if
it satisfies the inequality f (y) ≥ (1 − ω) f ∗, where 0 < ω < 1 and f ∗ is the optimal
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objective function value. An algorithm is called a (1 − ω)-approximation algorithm
if in a polynomially bounded time, it outputs a (1 − ω)-approximate solution,
given a solvable problem instance. A family of (1−ω)-approximation algorithms
parameterized by ω > 0, such that the time complexity of these algorithms is
polynomially bounded in 1/ω and in the problem instance length is called a fully
polynomial-time approximation scheme (FPTAS).

A number of FPTASes have been developed for the maximum MCF problem,
see e.g. [11, 13, 30]. FPTASes for the length-bounded maximum MCF were pro-
posed in [3, 9]. In [29], an FPTAS was shown to exist for a more general quality of
service-aware MCF problem (QoS-aware max-flow).

A modification of the length-bounded maximum MCF with an additional
constraint that the flow on all edges must be integer-valued is called integral
length-bounded maximum MCF. The results from [15] show that even when there
is no length constraint at all, the edge capacities are equal to 1, and the graph is
outerplanar, this problem does not admit approximation algorithms with constant
approximation ratios, unless P=NP. A result from [16] implies that the integral
length-bounded maximum MCF can not be approximated with a performance
ratio n0.5−ε (where n is the number of nodes) for any ε > 0 even in the special
case where all edges have equal length and all edge capacities are equal to 1,
assuming P,NP. In [18], a greedy O(m0.5)-approximation algorithm was proposed
(where m is the number of arcs) for a special case of this problem, the unweighted
edge-disjoint path problem. Complexity and non-approximability of the integral
length-bounded maximum MCF was also studied in [3, 6].

The authors are not aware of preceding experimental studies devoted to
LBMCF problems and LBMCF1 in particular. The exact and approximate ap-
proaches mentioned above were carefully studied in experiments with maximum
MCF problems where the flows may be routed along the paths of unbounded
length. The case of fractional flows was considered e.g. in [1, 4, 14, 25]. The
integral maximum MCF and its version with unsplittable flows were studied
experimentally in [2, 20, 22] and in other papers.

The present paper is aimed at an experimental comparison of between three
approaches to approximate and exact solution of LBMCF1: the approach of Garg
and Könemann to building FPTAS [13], the well-known greedy approach [2, 18, 19]
and the exact solving by means of an LP model on a time-expanded network [21].

In Section 2, we give a statement of length-bounded maximum MCF and
describe some of its basic properties. In Section 3, using the approach from [13]
and its improvement from [11], we develop an FPTAS for a special case where all
edges have unit length. This FPTAS has a smaller time complexity compared to the
FPTAS from [29] which was developed for arbitrary edge lengths. In Section 4, we
propose a simple greedy heuristic applicable to length-bounded maximum MCF
as well as integral length-bounded maximum MCF (assuming unit edge lengths
in both cases). In Section 5, we compare these algorithms with each other and
with CPLEX solver in computational experiments. The last two sections contain
the further research directions and conclusions. Appendix contains some proofs
omitted in the text.
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2. PROBLEM FORMULATIONS AND BASIC PROPERTIES

A flow in a digraph G = (V,E) from origin vertex s ∈ V to destination vertex t ∈
V is a nonnegative function f : E→ R+ such that for each node v ∈ V, v , s, v , t
holds ∑

(v′,v)∈E

f (v′, v) −
∑

(v,v′)∈E

f (v, v′) = 0

and
| f | =

∑
(s,v′)∈E

f (s, v′) −
∑

(v′,s)∈E

f (v′, s) =
∑

(v′,t)∈E

f (v′, t) −
∑

(t,v′)∈E

f (t, v′)

is the amount of flow sent from s to t in f . If P1, . . . ,Pr are paths from s to t, then a
sum of path-flows along P1, . . . ,Pr gives a network flow from s to t again. Given
that f =

∑r
j=1 f P j , we will say that f is routed along the set of paths P1, . . . ,Pr.

We assume that flow fi of commodity i, i = 1, . . . , k, has an origin si ∈ V and a
destination ti ∈ V. If f1, f2, . . . , fk are flows of k commodities, then F = ( f1, f2, . . . , fk)
is called a multicommodity flow in G.

An input instance of the maximum MCF consists of a directed network
G = (V,E), where |V| = n, |E| = m, an edge capacity function u : E→ R+ and
a specification (si, ti, di) ∈ V ×V ×R+ of commodity i for i = 1, . . . , k. The objective
is to maximize

∑k
i=1 | fi|, so that the sum of flows on any edge e ∈ E does not

exceed u(e) and | fi| ≤ di, i = 1, . . . , k.
The length-bounded maximum MCF has the same input, extended by an

upper bound L ∈ Z+ and the edge lengths τ(e), e ∈ E and asks for a maximum
MCF where the sum of flows on any e ∈ E does not exceed u(e), | fi| ≤ di, i = 1, . . . , k,
and the flow of each commodity is routed along a set of paths, where each path
has a length at most L. A special case of this problem where all edges have a unit
length requires that the flow of each commodity is routed along a set of paths at
most L edges long. Obviously, the maximum MCF may be considered a special
case of LBMCF1, assuming L = n. W.l.o.g. we will assume that all pairs (si, ti) are
unique, since otherwise the demands with identical pairs (si, ti) may be summed
together in one demand.

LBMCF1 is polynomially equivalent to its special case with unbounded de-
mands. Indeed, given an LBMCF1 instance G = (V,E), u : E→ R+, (si, ti, di),
i = 1, . . . , k and L, one can consider a new instance of this problem with un-
bounded demands on a network G′, obtained from G as described below. Let
Tv ⊂ V be the set of all vertices where at least one commodity originating in v is
consumed, i.e. Tv := ∪i:si=v{ti}. For each vertex v ∈ V with |Tv| > 0:

• New |Tv| vertices are created and connected by arcs leading into vertex v.

• The new vertices are assigned to commodities with destinations in Tv by a
one-to-one mapping. So we can denote the new vertices connected to v as
vi, where i is such that si = v.

• The capacities of edges leading from vertices vi to v are set to di.
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In the new problem the demands are (vi, ti,+∞), i = 1, . . . , k, and the new upper
bound is L′ = L + 1.

There is a bijection between the sets of feasible solutions of the original instance
and the new instance, and the objective function values of the corresponding solu-
tions are equal. Now, since the special case of LBMCF1 with unbounded demands
is solvable by LP methods in weakly polynomial time [3], the above reduction im-
plies that LBMCF1 with finite demands is also solvable in weakly polynomial time
(the same follows from the LP formulation (5)–(9) given below). The question of
solvability of LBMCF1 in strongly polynomial time remains open. In the special
case of maximum MCF, a strongly polynomial algorithm is known [28]. Nev-
ertheless, even in this special case, existence of exact algorithms using the same
combinatorial techniques as the Ford-Fulkerson method for the single-commodity
flow is unlikely (see e.g. [26], § 70.13).

In the special case of maximum MCF there is a well-known formulation of the
problem in terms of the LP using edge flows (see e.g. [17], § 11) with O(k + m +
kn) constraints and O(km) variables. Assuming that variables xi(e) ≥ 0 give the
amount of flow of commodity i over edge e the LP model is as follows.

max
k∑

i=1

∑
e=(si,v)∈E

xi(e), (1)

∑
e=(si,v)∈E

xi(e) ≤ di, i = 1, . . . , k, (2)

k∑
i=1

xi(e) ≤ u(e), e ∈ E, (3)

∑
e=(v′,v)∈E

xi(e) =
∑

e=(v,v′)∈E

xi(e), i = 1, . . . , k, v ∈ V\{si, ti}, (4)

An LP formulation of LBMCF1, involving O(Lkn + m) constraints and O(Lkm)
variables, may be constructed using a multicommodity flow in a supplementary
time-expanded network [21]. The node set V′ contains a copy Vt of the node
set V of graph G for every discrete time step t, t = 1, . . . ,L. For every directed
edge (v,w) ∈ E, there is an edge in E′ from vertex vt ∈ Vt in time layer t to ver-
tex wt+1 ∈ Vt+1. Besides, E′ contains edges (vt, vt+1) for all vt ∈ Vt, t = 1, . . . ,L−1.A
multicommodity flow is sought in this time-expanded network under additional
constraints which require that for each e = (v,w) ∈ E the sum of all flows travers-
ing the edges (vt,wt+1), t = 1, . . . ,L− 1 is at most u(e). For all i = 1, . . . , k, the origin
of commodity i is placed in the copy si1 of vertex si at level 1 and the destination
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is placed in the copy tiL of vertex ti at level L. The resulting LP formulation is as
follows

max
k∑

i=1

∑
e′=(si1,v2)∈E′

xi(e′), (5)

∑
e′=(si1,v2)∈E′

xi(e′) ≤ di, i = 1, . . . , k, (6)

k∑
i=1

∑
e′=(vt,wt+1)∈E′

xi(e′) ≤ u(e), e = (v,w) ∈ E, (7)

∑
e′=(vt−1,wt)∈E′

xi(e′) =
∑

e′=(wt,vt+1)∈E′
xi(e′), (8)

i = 1, . . . , k, wt ∈ Vt, t = 2, . . . ,L − 1,

∑
e′=(vL−1,wL)∈E′

xi(e′) = 0, i = 1, . . . , k, wL ∈ VL\{tLi}, (9)

where variables xi(e′) ≥ 0 give the amount of flow of commodity i over edge e′ ∈ E′.
The practice shows that large MCF problems require a long time and a great

amount of memory to solve using the exact LP methods either in path flow-based
or edge flow-based formulations. (see e.g. [26], § 70.13). For this reason, it is
important to develop faster algorithms to solve MCF problems approximately
and LBMCF1 among them.

3. FULLY POLYNOMIAL TIME APPROXIMATION SCHEME

3.1. The Case of Unbounded Demands
This subsection presents an FPTAS for LBMCF1 with unbounded demands,

which is developed analogously to the FPTAS for maximum MCF with un-
bounded demands [11].

Let Pi denote the set of all paths from si to ti in G and let Pi(L) denote the
subset of Pi which consists of paths at most L edges long. Besides that, put
P(L) = ∪k

i=1Pi(L). The main difference from the preceding algorithms [11, 13] is
that instead of Pi, here we use Pi(L), i = 1, . . . , k.

LBMCF1 in the case of unbounded demands may be formulated as an LP
problem (denoted by P) with an exponential number of path flow variables
x(P), P ∈ P(L) :
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max
∑

P∈P(L)

x(P), (10)

∑
P∈P(L):e∈P

x(P) ≤ u(e), e ∈ E, (11)

x(P) ≥ 0, P ∈ P(L). (12)

The dual problem with a polynomial number of variables y(e) ≥ 0, e ∈ E is

min
∑
e∈E

u(e)y(e), (13)

∑
e∈P

y(e) ≥ 1, P ∈ P(L), (14)

y(e) ≥ 0, e ∈ E, (15)

We first describe the general ideas of the (1 − ω)-approximation algorithm for
problem P according to the framework of Garg and Könemann [13], and after that
a faster version will be described in detail.

The algorithm proceeds by iterative improvements of primal solutions to prob-
lem P simultaneously computing a sequence of dual feasible solutions. The latter
ones allow to estimate the precision of the current primal solution and to find di-
rections for further improvement. It is convenient to compute a set of parameters
{`(e)}e∈E, called edge lengths instead of the current dual-feasible solution y. In what
follows, `(P) denotes the sum of lengths of all edges comprising a path P. The dual
feasible y may be reconstructed by scaling y(e) = `(e)/α, e ∈ E, where the factor α
is the length of a shortest path in P(L).

The algorithm starts with length function `(e) = δ for all e ∈ E using some
δ > 0, and with a primal solution x(P) = 0,P ∈ P(L). While there is a path in P(L)
of length less than 1, the algorithm selects such a path and updates the primal and
the dual variables as follows. For the primal solution x, the algorithm increases
the flow along path P by the minimum edge capacity in the path, i.e. denoting this
bottleneck capacity by u, we update the primal solution by setting x(P) = x(P) + u.
The updated primal solution may be infeasible, so in order to return x to feasible
region, all of its components are scaled down by an appropriate scalar. After that
the dual solution is updated so that the higher the congestion of an edge, the
greater multiplier is given to its length:

`(e) = `(e)
(
1 +

εu
u(e)

)
e ∈ P,
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(the choice of the parameter ε ∈ (0, 1] will be discussed in what follows). With
such an update rule, the length of the bottleneck edge always increases by a factor
of (1 + ε), while the lengths of edges not on P remain unchanged.

It will be shown in the sequel that this algorithm makes a polynomially
bounded number of iterations, and each iteration increases x(P) for just one path P,
therefore the number of non-zero components in the computed solution x is poly-
nomially bounded. Note that upon completion of this algorithm all paths in P(L)
have a length at least 1, so the set of parameters {`(e)}e∈E is a dual feasible solution
without any scaling.

In order to find out if there is a path P ∈ P(L) of length `(P) < 1 according
to the current length function, it suffices to compute a shortest path in P(L) for
each commodity. This may be done by executing L iterations of the Bellman-Ford
algorithm in O(kLm) time (see e.g. Theorem 2.3 in [23]). Let α := minP∈P(L) `(P)
denote the current shortest path length in P(L) and let α̂ be a lower bound on α,
which will be evaluated implicitly at each iteration of the algorithm as described
below.

Instead of looking through all origin-destination pairs of commodities, seeking
for a shortest path in P(L), we implement the improvement of Fleischer [11],
which consists in using a path of length at most (1 + ε)α and spending less time
to find such a path. To this end, we cycle through all commodities, staying with
one commodity until the shortest origin-to-destination path for that commodity
in P(L) is above (1 + ε)α̂. The initial lower bound α̂ is set to δ. As long as there
is some path P ∈ P(L) of length `(P) < min{1, (1 + ε)α̂}, we augment the flow
along such P. When such a path does not exist, it means that either α ≥ 1 and
it is time to terminate the algorithm or α < 1 and α ≥ (1 + ε)α̂. In the latter case,
one can update the lower bound by setting α̂ := (1 + ε)α̂. With such updates,
the lower bound will belong to the set {δ(1 + ε)r

}r=0,1,2,.... Upon the termination
of the algorithm, α̂ ∈ [1, 1 + ε]. Since each time α̂ is increased by a factor of
(1 + ε), the number of times that this happens is blog1+ε

1+ε
δ c, where b·c denotes

the rounding down. This implies that the final value of r is rmax = blog1+ε
1+ε
δ c.

Postulating that every new value of the lower bound α̂ defines a new phase r
of the algorithm, we will have an FPTAS represented by Algorithm 3.1 with the
main loop over phases 1, . . . , rmax as described below. A detailed outline of the
algorithm follows the (1 − ω)-approximation algorithm for maximum MCF [11]
with minor modifications.

In what follows we assume that S is the set of all vertices where at least one
commodity originates, i.e. S := ∪k

i=1{si}. If there is a vertex v′ ∈ Tv such that no
path from Pi(L) leads from v to v′, then the corresponding demand can not be
served at all. All such pairs of vertices v, v′ may be identified at the preprocessing
stage and the corresponding flows should be set to zero. W.l.o.g. we will assume
that such pairs of vertices do not exist.
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Algorithm 3.1. (1−ω)-approximation algorithm for LBMCF1 with unbounded
demands

Initialization
Choose ε, δ and assign rmax := blog1+ε

1+ε
δ c. Assign l(e) := δ for all e ∈ E.

The main loop
For all r = 1, ..., rmax do

For all v ∈ S do
Find |Tv| shortest paths P(v′) ∈ P(L) from v to all v′ ∈ Tv.
Choose v∗ = arg min

v′∈Tv
`(P(v′)). Let P = P(v∗).

While `(P) < min{1, δ(1 + ε)r
} do

Let u := mine∈P u(e).
For all e ∈ P assign `(e) := `(e)

(
1 + εu

u(e)

)
.

Augment the path-flow x(P) := x(P) + u/ log1+ε
1+ε
δ .

Find |Tv| shortest paths P(v′) ∈ P(L) from v to all v′ ∈ Tv.
Choose v∗ = arg min

v′∈Tv
`(P(v′)). Let P = P(v∗).

End while
End for-loop over v.

End for-loop over r.

In the above algorithm, the length-bounded shortest paths from v are found
by performing only L iterations of Bellman-Ford algorithm. The value of the flow
computed by Algorithm 3.1 and its number of iterations are bounded analogously
to those of (1 −ω)-approximation algorithm for the maximum MCF [11]. For this
reason the proof of Theorem 3.4 (see below), and the proofs of its supplementary
lemmas, are moved to the Appendix.

Lemma 3.2. Algorithm 3.1 terminates after O
(
m log1+ε

1+ε
δ

)
augmentations.

Lemma 3.3. The flow f (e) =
∑

P∈P(L):e∈P x(P), e ∈ E obtained by Algorithm 3.1 satisfies
the constraints f (e) ≤ u(e) for all e ∈ E.

Theorem 3.4. (i) Algorithm 3.1 makes O
(
m log1+ε

1+ε
δ

)
augmentations.

(ii) Given δ = 1+ε
ε
√

(1+ε)L
, the feasible solution to LBMCF1 with unbounded demands

found by Algorithm 3.1 has a total flow value 1 ≥ f ∗(1−ε)2

1+ε .

Now suppose a value ω > 0 is given. Then choosing ε =
3−ω−
√

(3−ω)2−4ω
2 and

δ = 1+ε
ε
√

(1+ε)L
, by Theorem 3.4, part (ii) we conclude that the obtained flow has a

value at least (1 − ω) f ∗.
The length-bounded shortest paths from vertex v are computed once in the

beginning of each iteration in the loop over v ∈ S, and it is computed after
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each augmentation. There are at most |S| · rmax = O(ε−2n log(L)) applications
of the truncated Bellman-Ford algorithm in Algorithm 3.1 that do not lead to
augmentations. Besides, Theorem 3.4, part (i) implies that the truncated Bellman-
Ford algorithm is applied at most O(m log1+ε

1+ε
δ ) = O(ε−2m log(L)) times with

augmentations. Thus the total runtime of Algorithm 3.1 is O(ε−2m2L log(L)) and
we have the following

Corollary 3.5. Given ω ∈ (0, 1), Algorithm 3.1 with ε =
3−ω−
√

(3−ω)2−4ω
2 and δ =

1+ε
ε
√

(1+ε)L
computes a (1−ω)-approximate solution to LBMCF1 with unbounded demands

in O(ω−2m2L log L) time.

Regarding the algorithm described in this subsection, we note that the idea
of adapting the approach from [11] to the length-bounded MCF has already been
discussed by Baier [3] for the case with general edge lengths. It was already noted
in [3] that the resource-constrained shortest path problem, which arises as a sub-
problem in the general case, is NP-hard and can only be solved approximately. In
our algorithm, we exploit the fact that in the unit edge length case, the subproblem
becomes efficiently solvable.

3.2. The Case of Finite Demands
The reduction described in Section 2 allows to obtain (1 − ω)-approximate

solutions to LBMCF1 by applying Algorithm 3.1 to the transformed instance
which consists of network G′ with n′ = n + k vertices and m′ = m + k edges, the
specification of commodities (vi, ti,+∞), i = 1, . . . , k and the length bound L′ =
L + 1. We can save some time by using the structure of G′. Here one can find the
shortest paths consisting of at most L′ edges from all the new vertices vi attached
to a vertex v, v ∈ S, by means of L iterations of Bellman-Ford algorithm, starting
it from v. Then in total there are at most O(ε−2n log(L)) calls of the Bellman-Ford
algorithm that do not lead to an augmentation and there are at most O(ε−2(m +
k) log(L)) calls to the Bellman-Ford algorithm following the augmentations, so we
have

Corollary 3.6. A (1 − ω)-approximate solution to LBMCF1 may be computed in time
O(ω−2(m + k)mL log L).

This corollary gives a lower time bound compared to the time bound
O(ω−2(m + k)mn log(m + k) · (log log n + 1/ω)) of the FPTAS developed in [29].
However the FPTAS from [29] is applicable to LBMCF where the length function
has a more general form.

4. GREEDY HEURISTIC

As an alternative to the guaranteed approximation algorithm from Subsec-
tion 3.2, we consider a simple Greedy heuristic, based on augmenting flows along
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the shortest paths. This is a well-known greedy approach, which proved to be
fruitful for approximate solution of different versions of maximum MCF with an
additional constraint that the flow on all edges must be integer-valued or each
commodity should be routed along a single path [2, 16, 18, 19]. In general, the idea
of greedy augmenting a flow via shortest path flows dates back to the O(n2m)-time
algorithm for the maximum flow problem [10].

In what follows, by a shortest path we mean a path with the minimal number
of edges in G. In each iteration of Greedy, the shortest paths are found for all
origin-destination pairs and a maximum possible flow is routed along the path
of minimal length among the paths with at most L edges. After that we decrease
the edge capacities along the path by the value of the path flow, delete all edges
where the remaining capacity turns to 0 and proceed to the next iteration. The
algorithm terminates when a set S of shortest paths from P(L), connecting the
unsatisfied origin-destination pairs in the current network, becomes empty. Here
we assume that P(L) is the set of paths at most L edges long in the current network.

Algorithm 4.1. Greedy Heuristic for LBMCF1

Initialization of set S :
Compute a shortest path Psiti ∈ P(L) from si to ti
for all i = 1, . . . , k, for which such paths exist.
Denote the set of computed paths by S.

The main loop:
While |S| > 0 do

Choose a shortest path P in S, put S := S\P.
Let si and ti be the first and the last vertices in path P.
umin := min{u(e) : e ∈ P}, x(P) := min{umin, di}.
di := di − x(P).
For all e ∈ P do u(e) := u(e) − x(P).
If there are edges e ∈ P, such that u(e) = 0 then

Delete all edges e ∈ P, such that u(e) = 0, from G.
Build a new set S by computing shortest paths Psiti ∈ P(L)
from si to ti for all i = 1, . . . , k, for which such paths exist.

End if.
End while.

Clearly, the collection of path-flows with x(P) > 0 found by Greedy constitutes
a feasible solution. Besides that, since the setS of length-bounded shortest paths is
computed at most m times, the time complexity of Greedy heuristic is O(m2 log n) if
the Dijkstra algorithm with heaps is used. If the truncated Bellman-Ford algorithm
is used, then the time complexity of Greedy is O(m2L).

Greedy can easily be converted to compute approximate solutions for length-
bounded maximum MCF if instead of the number of edges in a path one takes
the path length in terms of edge lengths τ(e). Note that Greedy outputs a feasible
solution with an integer-valued flow on all edges if an instance is feasible and all
demands and edge capacities are integer-valued.
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5. COMPUTATIONAL EXPERIMENTS

This section describes the computational experiments in solving LBMCF1 by
(1 − ω)-approximation algorithm from Subsection 3.2, by Greedy heuristics from
Section 4, and by the LP-solver CPLEX 11 in dual simplex mode, using the LP
formulation based on the time-expanded networks. For the large instances, where
this formulation required too much time and memory, we used the LP formulation
of Maximum MCF from [17] to find an upper bound for the optimum. All
experiments were carried out on Xeon X5675, 3.07 GHz, 96 Gb RAM, 12 cores.

5.1. Implementation Details
The (1 − ω)-approximation algorithm for LBMCF1 was implemented with a

minor improvement [11], which allows to terminate the algorithm when the best-
found primal solution and the best-found dual feasible solution are within the
required approximation ratio. Whenever the total amount of some commod-
ity i, routed by the current iteration, achieves the corresponding demand di, this
commodity is excluded from consideration in subsequent iterations.

It is easy to see that the most time-consuming part of the Greedy algorithm
is the procedure building the sets of shortest paths. We found that this part of
Greedy is so compute-intensive that CPU cache misses percent may slow down
the execution significantly, so we reduced the memory footprint of the all-pairs
shortest paths procedure by implementing compact data structures both for the
input graph and for the temporary data. Also, we used a specially designed
version of the Dijkstra’s algorithm that may be called in parallel for each root
vertex v ∈ V. With these optimizations, we reduced the final time-footprint of the
Greedy up to a factor 0.1 of its first naı̈ve implementation.

5.2. Problem Instances
The networks for testing instances were obtained using a modification of

generator RMFGEN [14]; besides, several instances with real-life structure were
constructed. RMFGEN produces a given number of two-dimensional grids with
arcs connecting a random permutation of nodes in b adjacent planar grids of
size a × a. Arcs of the grids have capacities 3600, while the capacities of arcs
connecting the grids are chosen uniformly at random from 1 to 100. Origins and
destinations are randomly chosen. In all experiments with RMFGEN networks,
the demands were assigned as in [14] so that there is a feasible flow with the
maximum arc congestion λ, where λ is set to 0.6 or 1.

The instances with real-life structure represent prospective Software Defined
Satellite Networks (SDSN) (see e.g. [27]), which provide world-wide telecom-
munication services. We suppose that the network consists of 135 satellites on
low Earth orbit (LEO), 40 ground stations (gates to Internet), and a Network
Operations Control Center (NOCC). In this SDSN, the packet routes for each
origin-to-destination pair (si, ti) will be computed at NOCC in real time and each
node (satellite or ground station) will regularly receive the updated routes for all
packets that originate in this node. Each packet sent from si to ti contains some
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content data and a path of the packet route from si to ti.An upper bound L on the
number of edges in packet paths is imposed due to a natural technical limitation
on the number of bits reserved for encoding a packet route. Short packet paths are
also preferable because they tend to have low transmission delays. For simplicity,
we assume that each problem instance describes the system in a single time-frame
and all demands for the time-frame are known in advance.

The original input data is not the same as for the considered LBMCF1 problem.
The communications between satellites and between satellites and stations are
represented as usual, as the directed arcs with given bandwidth capacities but
the communications between stations are different. The station consists of several
internet gateways that can be connected with the gateways of the other stations.
The bandwidth is defined in total for the whole gateway rather than for the
particular arcs between gateways.

The graphs modelling the SDSN were constructed with different trade-off
between the model accuracy and the size of G. Networks of these instances contain
a component with vertices of low degree (from 2 to 7) corresponding to satellites,
and a component of vertices with high degree (near to n/3) corresponding to
Internet gates at ground stations.

In Instance 1 of the series, each gateway is represented by its own “main” node,
and in addition, has two artificial nodes for incoming and outgoing traffic. The
gateway bandwidth is assigned to the arcs from the main node to these artificial
nodes. The traffic between gateways is passed only through the artificial nodes.
This is an exact representation, but has the largest size of the resulting graph G.

In Instance 2, each gateway is represented by one node and is connected with
one artificial “central” node forming the star subgraph on the set of the gateway
nodes. Instance 3 is the same as 2 but with doubled bandwidths. In Instance 4, all
the gateways of the same station are united in one station node and are connected
with all other such nodes, forming a clique on the set of station nodes. Instance 5
is the same as 4 but with doubled bandwidths. In Instance 6, all the stations are
removed, only the satellites are given. In Instance 7 all the gateways of one station
are united in one gateway having their total bandwidth, then the same approach
as for Instance 1 is applied.

The demands for commodities were generated so as to model the global
telecommunication flows. We assumed that the number of active users in each
square unit of the Earth surface is proportional to population on the unit. The
origin and the destination of each call are chosen at random among active users.
All active users are assigned to the nearest satellite or ground station.

The input data of the test instances can be downloaded from:
http://math.nsc.ru/AP/benchmarks/Flow/mcf tests.html

5.3. Experimental Results
The values of relative errors of solutions found by FPTAS and by Greedy

heuristic were estimated a-posteriori in terms of upper bound ω′ := (UB −
fappr)/UB, where fappr is the value of objective function found by the algorithm and
UB is the optimum in the LP model based on the time-expanded network (on grid
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Instance 1 2 3 4 5 6 7
n 543 272 272 197 197 135 318
m 19474 1292 1292 992 992 750 4652
k 12373 12373 12373 12373 12373 743 12373

Table 1: Parameters of Instances With Real-Life Structure

graphs) or an upper bound on the optimum in maximum MCF LP formulation
(on the instances with real-life structure).

5.3.1. Experiments on Grid Graphs
The attained approximationsω′ and CPU times (in seconds) for the grid graphs

with a = 6 and k = 15 are given in Table 2. One can see that the FPTAS occupies the
position between Greedy heuristic and CPLEX solver both in terms of the precision
and the running time, except for the two smallest instances where Greedy was able
to find optimal solutions. The parallel version of Greedy using 12 cores is clearly
the fastest one, achieving speed-ups of about 4.5 times compared to the serial
version. On small instances this speed-up vanishes due to the communication
cost.

The growth of CPU times with further increase of k is displayed in Fig 1. Here
we use the largest grid graph with a = 6, b = 8. Both approximate algorithms
have run-time upper bounds independent of k (see Sections 3 and 4), and we
can see that the curves of actual run-times of these algorithms in Fig 1 are nearly
horizontal. The size of LP formulation based on the time-expanded network
depends significantly on k, which is supported by Fig 1.

RMFGEN Greedy FPTAS, CPLEX
instance ω = 0.2

b λ |E| CPU time ω′ CPU time ω′ CPU time
1 12 1 1

core cores core core
2 0.6 276 0.01 0.01 0 0.07 0.01 0.15
4 0.6 588 0.05 0.02 0 0.23 0.01 0.25
6 0.6 900 0.09 0.02 0.06 0.53 0.02 0.64
8 0.6 1212 0.14 0.03 0.29 0.74 0.02 1.06
2 1 276 0.01 0.01 0.03 0.08 0.04 0.15
4 1 588 0.06 0.02 0.06 0.3 0.05 0.61
6 1 900 0.12 0.04 0.07 0.57 0.01 0.44
8 1 1212 0.16 0.04 0.28 0.79 0.02 0.59

Table 2: A posteriori estimated approximation ω′ and CPU times on grid graphs, L = 9
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Figure 1: CPU time as a function of k on grid graph, a = 6, b = 8.

Inst- Greedy FPTAS, ω = 0.2, CPLEX
ance heuristic computing UB

CPU time ω′ CPU time ω′ CPU time
1 core 12 cores

1 1.63 0.4 0.077 1689.6 0.004 –
2 0.51 0.16 0.054 157.6 0.008 7 971
3 0.23 0.1 0.057 160.4 0.01 6 947
4 0.11 0.05 0.038 80.6 0.012 1 852
5 0.07 0.04 0.026 83.6 0.012 1 872
6 0.18 0.1 0.177 3.8 0.12 345
7 0.23 0.06 0.039 389.5 0.006 144 456

Table 3: A posteriori estimated approximation ω′ and CPU times on instances with real-life structure,
L = 9

5.3.2. Experiments on Instances with Real-Life Structure
Instances 1-7 have a greater range of graph sizes and a much greater number

of commodities compared to the instances with grid graphs (see Tables 1 and 2).
The LP model based on the time-expanded network required prohibitive

amount of time and memory. Therefore in the case of Instances 1-7 we could
compute only an upper bound UB using the LP solver of CPLEX. Still, in the case
of Instance 1, CPLEX was unable to find an upper bound due to lack of memory
and UB was set to the total value of demands.

Table 3 shows the a posteriori pessimistic estimates of approximations ω′

attained by the algorithms and the corresponding CPU times (in seconds). Here
FPTAS always has a greater precision than Greedy and the latter one is up to 103

times faster even in the sequential version.
In order to evaluate the algorithms on a variety of different real-life instances
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Greedy FPTAS
ω = 0.4 ω = 0.2 ω = 0.1

Average 0.245 164.8 402.0 857.6
Maximum 0.3 177.6 444.1 888.7

Table 4: CPU times (sec.) on 300 instances with real-life structure, L = 9

Greedy FPTAS
ω = 0.4 ω = 0.2 ω = 0.1

Average 0.038 0.006 0.004 0.003
Maximum 0.076 0.01 0.006 0.004

Table 5: A posteriori estimated approximation ω′ on 300 instances with real-life structure, L = 9

with similar structure we generated 300 versions of graph G that model SDSN
analogously to Instance 7 but in different time-frames. Different satellite posi-
tions in these time-frames lead to different links between satellites and between
satellites and ground stations. The bandwidth of the links varies as well. The spec-
ification of demands remained unchanged. Application of FPTAS and Greedy to
these instances in the single-core version with different values of parameters ω
and L gave the results shown in Tables 4, 5 and 6.

Tables 4 and 5 indicate that the average and maximum CPU times, as well as
ω′ estimates are close to those reported in Table 3 for Instance 7, which implies
that both algorithms have a stable behavior on this type of input data.

One can see from Table 6 that increasing L increases the CPU time of FPTAS but
reduces the CPU time of Greedy. Clearly, when L is low, the FPTAS time reduces
due to fewer number of iterations of the truncated Bellman-Ford algorithm. On
the other hand, in Greedy algorithm, after a few iterations, the algorithm starts
wasting a lot of time looking through all origin-destination pairs and checking
whether any extra flow can be routed for each of them.

In our experiments, we also tested a modification of Greedy algorithm, where
the augmenting path is chosen as the longest shortest path over all origin-destination
pairs. Interestingly, it turned out that this “reversed” Greedy algorithm yields
similar results to the “classical” one in terms of precision and CPU time.

Greedy FPTAS
CPU time ω′ CPU time ω′

L = 6 0.717 0.3 263 0.08
L = 9 0.245 0.038 402 0.004

L = 12 0.225 0.017 592 0.004

Table 6: Average CPU times (sec.) and a posteriori estimated approximation ω′ on 300 instances for
ω = 0.2 and different values of L
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6. FURTHER RESEARCH

We expect that an implementation of the FPTAS may be improved using the
line search method for updating the current primal and dual solutions as proposed
in [1] and by the means of parallel computations. The exact LP-model discussed
in Section 2 is based on a Kirchoff-type formulation in an extended graph. An
alternative column generation approach, assuming that columns are the length-
bounded paths, has no polynomial time-bound but is often efficient in practice
(see e.g. [20, 22]), so it would be interesting to make an experimental comparison
to it. Using a generic CPLEX solver may not be the best option for the LP model
considered in this paper, so further research might include a comparison of the
algorithms presented here with some specialized optimization methods for the
problems with multiflows-like structures, e.g. from [7, 8, 12]. Comparison of
different greedy rules also deserves a further research, as it was done e.g. in [2]
for the Minimum Cost Multiple-source Unsplittable Flow Problem.

7. CONCLUSIONS

We have considered three approaches to solving the length-bounded max-
imum multicommodity flow problem with unit edge-lengths. Following the
approach of Garg and Könemann [13] with an improvement from [11], we have
developed an FPTAS for this problem. The proposed FPTAS has a lower time
complexity bound compared to the previously known algorithms, designed for
problems with the length functions of more general form. We have also imple-
mented a heuristic algorithm based on the well-known greedy approach, which
in our case consists in augmenting the multicommodity flow via shortest paths.
The third approach considered in the paper yields exact solutions by means of
CPLEX solver applied to an LP model on the time-expanded network from [21].

The FPTAS and Greedy heuristic proposed in this paper turned out to be
significantly faster than the CPLEX LP solver, especially on the instances with
large networks and great number of demands. The FPTAS is more accurate but
requires more CPU time than Greedy, which may be a decisive factor in practical
applications. In general, the practical precision of FPTAS turns out to be much
better than the theoretical guarantee.
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APPENDIX

This appendix contains the proofs of Theorem 3.4, Lemma 3.2 and Lemma 3.3,
omitted in Subsection 3.1.

Proof of Lemma 3.2. Initially, `(e) = δ for all edges e. The last time the
length of an edge is updated, it is on a path of length less than one, and it is
increased by at most a factor of 1 + ε. Thus the final length of any edge is at
most 1 + ε. Since every augmentation increases the length of some edge by a fac-
tor of at least 1+ε, the number of possible augmentations is at most m log1+ε

1+ε
δ . �

Proof of Lemma 3.3. Every time the total flow on an edge e increases by a
fraction 0 < a j ≤ 1 of u(e)/ log1+ε

1+ε
δ , its length is multiplied by 1 + a jε. Since

1 + aε ≥ (1 + ε)a for all 0 ≤ a ≤ 1,we have Π j(1 + a jε) ≥ (1 + ε)
∑

j a j , when 0 ≤ a j ≤ 1
for all j. So every time the flow on an edge increases by its capacity divided
by log1+ε

1+ε
δ , the length of the edge increases by a factor of at least 1 + ε. Ini-

tially `(e) = δ and at the end `(e) < 1+ε, so the total flow on e cannot exceed u(e). �

Proof of Theorem 3.4. Part (i) follows from Lemma 3.2.
Now consider part (ii). Let ` j denote the length function after j-th augmen-

tation in Algorithm 3.1 and let α(`) denote the length of a shortest path in P(L)
w.r.t. a length function `. Given a length function `, define D(`) :=

∑
e `(e)u(e), and

let D j := D(` j). Then D j is the dual objective function value corresponding to ` j
and β := min` D(`)/α(`) is the optimal dual objective value. Let 1 j be the primal
objective function value after j-th augmentation and let P be the augmenting path.
Denote σ := log1+ε

1+ε
δ . Then for each j ≥ 1,

D j =
∑

e

` j(e)u(e) =
∑

e

` j−1(e)u(e) + ε
∑
e∈P

` j−1(e)u

≤ D j−1 + ε(1 j − 1 j−1)(1 + ε)σα(` j−1),

which implies that

D j ≤ D0 + ε(1 + ε)σ
j∑

j′=1

(1 j′ − 1 j′−1)α(` j′−1). (16)

Consider the length function ` j − `0. Note that D(` j − `0) = D j −D0. For any path
used by the algorithm, the length of the path using ` j versus ` j − `0 differs by at
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most δL. Since this holds for the shortest path using length function ` j − `0, we
have α(` j − `0) ≥ α(` j) − δL. Hence

β ≤
D(` j − `0)
α(` j − `0)

≤
D j −D0

α(` j) − δL
.

Using the bound on D j −D0 from equation (16), we obtain

α(` j) ≤ δL +
ε(1 + ε)σ

β

j∑
j′=1

(1 j′ − 1 j′−1)α(` j′−1).

Observe that, for fixed j, this right hand side is a non-decreasing function on
α(`0), . . . , α(` j−1). So, for any sequence of upper bounds α′j, j = 1, . . . , on α(` j), j =

1, . . . , we have

α(` j) ≤ α′j = α′j−1(1 + ε(1 + ε)σ(1 j − 1 j−1)/β) ≤ α′j−1eε(1+ε)σ(1 j−1 j−1)/β,

where the last inequality uses the fact that 1 + a ≤ ea for a ≥ 0. We can use a valid
upper bound α′0 = δL, which implies

α(` j) ≤ δLeε(1+ε)σ1 j/β.

By the stopping condition, after the last augmentation (let it be the augmentation
number t) we have

1 ≤ α(`t) ≤ δLeε(1+ε)σ1t/β

and hence
1t

β
≥

ln(δL)−1

ε(1 + ε)σ
=

ln(1 + ε) ln(Lδ)−1

ε(1 + ε) ln 1+ε
δ

.

Recalling that δ = 1+ε
ε
√

(1+ε)L
we obtain

1t

β
≥

(1 − ε) ln(1 + ε)
ε(1 + ε)

≥
(1 − ε)(ε − ε2/2)

ε(1 + ε)
≥

(1 − ε)2

1 + ε
,

which ensures the required flow value. The feasibility of the obtained solution
follows from Lemma 3.3. �




