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1. INTRODUCTION

Mathematical programming problem with equilibrium constraints is a con-
strained optimization problem in which constraints include some complementar-
ity conditions. We consider the following semi-infinite mathematical program-
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ming problem with equilibrium constraints:

(SIMPEC) min f (z)
subject to 1(z, t) ≤ 0, ∀ t ∈ T,

h(z) = 0,
G(z) ≥ 0,
H(z) ≥ 0,

G(z)TH(z) = 0,

where the index set T is an infinite compact subset of Rn. f : Rn
→ R, G : Rn

→

Rm, H : Rn
→ Rm, h : Rn

→ Rq and 1 : Rn
×T→ R are continuously differentiable

functions on Rn.
Mathematical programming problems with equilibrium constraints belong to

a difficult class of nonlinear optimization problems. Since the feasible region of
these problems are not necessarily convex, many constraint qualifications like
Abadie constraint qualification, Mangasarian-Fromovitz constraint qualification,
Slater constraint qualification do not hold (see [28]). Mathematical programming
problems with equilibrium constraints are applicable in many fields as hydro-
economic river-basin model [1], chemical engineering process [18], traffic and
telecommunications networks [19], etc. For more details on mathematical pro-
gramming problems with equilibrium constraints we refer to [2, 3, 4, 5, 6, 8, 12, 15].
Pandey and Mishra [16] formulated Wolfe and Mond-Weir type dual models and
established duality results for mathematical programming problems with equilib-
rium constraints. Singh et al. [21] discussed the Lagrange duality for mathematical
programming problems with equilibrium constraints for saddle point criteria.

A semi-infinite programming problem (SIP) is a mathematical programming
problem with finitely many variables and infinitely many constraints. SIP has
been widely applied in many fields, such as transportation problem [10], robot
trajectory design problem [13], engineering design problem [17], disjunctive pro-
gramming [22], robust optimization and design centering problem [23] , optimal
power flow problems in power systems with transient stability constraints [24],
air pollution control problem [25], lapidary cutting problems [27]. Shapiro [20]
gave many results on Lagrangian duality for convex semi-infinite programming
problem. Mishra and Jaiswal [14] obtained necessary and sufficient optimality
conditions for the (SIMPEC), also formulated Wolfe and Mond-Weir type dual
models and established weak, strong and converse duality results. For more
details on SIP, we refer to [7, 9, 11, 26] and references therein.

Motivated by Mishra and Jaiswal [14] and Singh et al. [21], we construct
Lagrange type dual model for (SIMPEC) in smooth case and present weak and
strong duality along with the concepts of saddle point. Although in this paper,
we apply the idea of [21] to the semi-infinite programming, the duality model and
the technique of proof is differ from those in [21]. In particular, we present the
relationships between saddle point of (SIMPEC), optimal solutions of (SIMPEC),
and its dual, and M-stationary point for (SIMPEC), which are not given in [21].
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The organization of the paper is as follows: in Section 2, we give some def-
initions and preliminary results to be used in the rest of the paper. In Section
3, we propose Lagrange type dual model and establish weak and strong duality
results. In Section 4, we derive saddle point optimality criteria for semi-infinite
mathematical programming problems with equilibrium constraints. We illustrate
our results by suitable examples.

2. PRELIMINARIES

In this section, we present some basic definitions and results, which will be
used in this article. Let P be defined as the feasible region of the (SIMPEC). Let
z̄ ∈ P be any feasible solution of (SIMPEC). The following index sets will be used
in the sequel.

T1 = T1(z̄) = {t ∈ T : 1(z̄, t) = 0},

α = α(z̄) = {i : Gi(z̄) = 0 , Hi(z̄) > 0},

β = β(z̄) = {i : Gi(z̄) = 0 , Hi(z̄) = 0},

γ = γ(z̄) = {i : Gi(z̄) > 0 , Hi(z̄) = 0}.

In the standard nonlinear programming problem, there is only one stationary
point condition that is KKT- type condition; but the mathematical programming
problem with equilibrium constraints has many stationary point conditions like
S-stationary point, M-stationary point, A-stationary point, C-stationary point,
W-stationary point(see, [28]). The following concept of M-stationary point was
introduced by Mishra and Jaiswal [14] for semi-infinite programming.

Definition 1. A feasible point z̄ ∈ P of the (SIMPEC) is called the Mordukhovich
stationary point (M-stationary point) if there exists λ = (λ1, λh, λG, λH) ∈ Rl+q+2m and
indices t1, t2, ..., tl ∈ T1(z̄), l ≤ n + 1, such that the following conditions hold:

∇ f (z̄) +

l∑
i=1

λ1i ∇1(z̄, ti) +

q∑
j=1

λh
j∇h j(z̄) −

m∑
i=1

[λG
i ∇Gi(z̄) + λH

i ∇Hi(z̄)] = 0, (1)

λ1T1 ≥ 0, λG
γ = 0, λH

α = 0, (2)

∀i ∈ β either λG
i > 0, λH

i > 0 or λG
i λ

H
i = 0. (3)

The following No Nonzero Abnormal Multiplier Constraint Qualification for
(SIMPEC) is given by Mishra and Jaiswal [14].

Definition 2. Let z̄ ∈ P be a feasible point of the (SIMPEC). We say that the No Nonzero
Abnormal Multiplier Constraint Qualification (NNAMCQ) is satisfied at z̄ if there is no
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nonzero vector λ = (λ1, λh, λG, λH) ∈ Rl+q+2m and indices t1, t2, ..., tl ∈ T1(z̄), l ≤ n + 1,
such that the following conditions hold:

l∑
i=1

λ1i ∇1(z̄, ti) +

q∑
j=1

λh
j∇h j(z̄) −

m∑
i=1

[λG
i ∇Gi(z̄) + λH

i ∇Hi(z̄)] = 0, (4)

λ1T1 ≥ 0, λG
γ = 0, λH

α = 0, (5)

∀i ∈ β either λG
i > 0, λH

i > 0 or λG
i λ

H
i = 0. (6)

The following necessary optimality condition given by Mishra and Jaiswal
[14] presents the relationship between a local optimal solution and M-stationary
point for the (SIMPEC).

Theorem 3. Let z̄ ∈ P be a local optimal solution for the (SIMPEC) where all functions
are continuously differentiable at z̄. Suppose that NNAMCQ is satisfied at z̄ then z̄ is an
M-stationary point.

Definition 4. A differentiable function f defined on a nonempty open convex subset
X ⊂ Rn is convex on X if and only if for all z, z̄ ∈ X, we have

f (z) − f (z̄) ≥ 〈∇ f (z̄), z − z̄〉. (7)

3. SIMPEC LAGRANGE DUALITY

In this section, we present the Lagrange type dual model and find out weak
and strong duality relationship between the primal and their dual models.
Let

ϕ(λ) = min
z∈Rn

LSIMPEC(z, λ),

where

LSIMPEC(z, λ) = f (z) +

l∑
i=1

λ1i 1(z, ti) +

q∑
j=1

λh
j h j(z) −

m∑
i=1

[λG
i Gi(z) + λH

i Hi(z)],

is the SIMPEC Lagrangian, λ = (λ1, λh, λG, λH) ∈ Rl+q+2m and indices t1, t2, ...,
tl ∈ T1(z̄), l ≤ n + 1.

We present the following Lagrange type dual model which depends on a
feasible point z̄ ∈ P for the (SIMPEC):

SIMPEC-LD(z̄) max ϕ(λ)
subject to λ1i ≥ 0, ti < T1, λG

γ ≥ 0, λH
α ≥ 0,

∀i ∈ β either λG
i > 0, λH

i > 0 or λG
i λ

H
i = 0.

Let PD(z̄) be the feasible region of the SIMPEC-LD corresponding to a point
z̄ ∈ P. The dual model SIMPEC-LD(z̄) depends on a feasible point z̄ ∈ P of the
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(SIMPEC). Now, we present the Lagrange type dual model which is independent
of the (SIMPEC):

SIMPEC-LD maxϕ(λ)
subject to λ ∈ PD = ∩z∈PPD(z),

where PD = ∩z∈PPD(z) , ∅ is feasible region of the SIMPEC-LD.

Remark 5. The feasible solution of the SIMPEC-LD is also a feasible solution of the
SIMPEC-LD(z) for all z ∈ P, since the feasible region of the SIMPEC-LD is the inter-
section of the feasible regions of the SIMPEC-LD(z) for all z ∈ P. Also, SIMPEC-LD is
independent of the primal problem, therefore SIMPEC-LD will perform better dual model
than SIMPEC-LD(z).

Theorem 6. (Weak Duality) Let z be feasible point for the (SIMPEC) andλ be the feasible
point for the SIMPEC-LD(z), where λ = (λ1, λh, λG, λH) ∈ Rl+q+2m and indices t1, t2, ...,
tl ∈ T1(z̄), l ≤ n + 1, then

ϕ(λ) ≤ f (z).

Proof. Since z ∈ P and λ ∈ PD(z) are feasible points for the (SIMPEC) and the
SIMPEC-LD(z) respectively, then we get

ϕ(λ) = min
z∈Rn

LSIMPEC(z, λ)

≤ f (z) +

l∑
i=1

λ1i 1(z, ti) +

q∑
j=1

λh
j h j(z) −

m∑
i=1

[
λG

i Gi(z) + λH
i Hi(z)

]
.

Using the feasibilty conditions of the (SIMPEC) 1(z, ti) ≤ 0, h j(z) = 0, −Gi(z) ≤ 0,
−Hi(z) ≤ 0, we have

l∑
i=1

λ1i 1(z, ti) +

q∑
j=1

λh
j h j(z) −

m∑
i=1

[
λG

i Gi(z) + λH
i Hi(z)

]
≤ 0. (8)

From (8), we have

ϕ(λ) ≤ f (z).

The following results are direct consequences of the Theorem 6.

Corollary 7. If z is a feasible solution for the (SIMPEC) andλ is a feasible solution for the
SIMPEC-LD, where λ = (λ1, λh, λG, λH) ∈ Rl+q+2m and indices t1, t2, ..., tl ∈ T1(z̄), l ≤
n + 1, then

ϕ(λ) ≤ f (z).

Corollary 8. If z̄ and λ̄ are the optimal solutions for the (SIMPEC) and the SIMPEC-LD,
respectively, where λ̄ = (λ̄1, λ̄h, λ̄G, λ̄H) ∈ Rl+q+2m and indices t1, t2, ..., tl ∈ T1(z̄), l ≤
n + 1, then

ϕ(λ̄) ≤ f (z̄).
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Corollary 9. If z̄ and λ̄ are feasible solutions for the (SIMPEC) and the SIMPEC-LD,
respectively, and f (z̄) = ϕ(λ̄), then z̄ and λ̄ are optimal solutions for the (SIMPEC) and
the SIMPEC-LD, respectively where λ̄ = (λ̄1, λ̄h, λ̄G, λ̄H) ∈ Rl+q+2m and indices t1, t2, ...,
tl ∈ T1(z̄), l ≤ n + 1.

The following example illustrates the result of Theorem 6.

Example 10. Consider the following (SIMPEC):

min f (z) = z2
1 + z2

2

subject to 1(z, t) = −z1 − z2 + 1 − t ≤ 0, ∀t ∈ [0, 1],
G1(z) = z1 ≥ 0,
H1(z) = z2 ≥ 0,

G1(z).H1(z) = z1.z2 = 0.

The feasible region of the above problem is given by

S = {(z1, z2) ∈ R2 : z1 ≥ 1, z2 ≥ 1, z1.z2 = 0}.

The Lagrange function for the (SIMPEC) is given by

LSIMPEC(z, λ1, λG, λH) = f (z) + λ11(z, 0) − λGG1(z) − λHH1(z).

Therefore, we have

ϕ(λ1, λG, λH) = min
z∈R2

LSIMPEC(z, λ1, λG, λH),

= −
(λ1 + λG)2

4
−

(λ1 + λH)2

4
.

Let P = ∪i=1,2Pi where,

P1 = {(z1, z2) : z1 ≥ 1, z2 = 0},
P2 = {(z1, z2) : z1 = 0, z2 ≥ 1}.

Now, we get the following two Lagrange type dual problems for any feasible z ∈ P1,

SIMPECLD1(z) max ϕ(λ1, λG, λH) = −
(λ1 + λG)2

4
−

(λ1 + λH)2

4
,

subject to λ1 ≥ 0, λG = 0, λH
∈ R.

For any z ∈ P2,

SIMPECLD2(z) max ϕ(λ1, λG, λH) = −
(λ1 + λG)2

4
−

(λ1 + λH)2

4
,

subject to λ1 ≥ 0, λG
∈ R, λH = 0.
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Let P1
D and P2

D be the feasible region of SIMPECLD1(z) and SIMPECLD2(z) respec-
tively. Then, we have

SIMPECLD max ϕ(λ1, λG, λH) = −
(λ1 + λG)2

4
−

(λ1 + λH)2

4
,

subject to (λ1, λG, λH) ∈ PD,where PD = ∩z∈Pi,i=1,2 Pi
D(z) = {(λ1, λG, λH) : λ1 ≥ 0, λG =

0, λH = 0}, is feasible region for SIMPECLD. So, it is easy to show that

f (z) = z2
1 + z2

2 ≥ −
(λ1 + λG)2

4
−

(λ1 + λH)2

4
= ϕ(λ1, λG, λH),

which implies the weak duality theorem holds.

Before going to next result, we define some index sets as follow:

J+ = { j : λh
j > 0}, J− = { j : λh

j < 0},

α+ = {i ∈ α : λG
i > 0}, α− = {i ∈ α : λG

i < 0},

γ+ = {i ∈ γ : λH
i > 0}, γ− = {i ∈ γ : λH

i < 0},

β+ = {i ∈ β : λG
i > 0, λH

i > 0},

β+
G = {i ∈ β : λG

i = 0, λH
i > 0}, β−G = {i ∈ β : λG

i = 0, λH
i < 0},

β+
H = {i ∈ β : λH

i = 0, λG
i > 0}, β−H = {i ∈ β : λH

i = 0, λG
i < 0}.

The following theorem establishes strong duality relationship between the
(SIMPEC) and the SIMPEC-LD(z̄) at a local optimal solution z̄ of the (SIMPEC).

Theorem 11. (Strong Duality) Let z̄ be a local optimal solution of the (SIMPEC) such
that the SIMPEC-NNAMCQ holds at z̄. Suppose that f , 1(., t) (t ∈ T1), h j ( j ∈ J+),
−h j ( j ∈ J−), −Gi (i ∈ α+

∪ β+
∪ β+

H), −Hi (i ∈ γ+
∪ β+

∪ β+
G) are convex functions

at z̄ on P. If α− ∪ γ− ∪ β−G ∪ β
−

H = ∅ then, there exists λ̄ ∈ Rl+q+2m and indices
t1, t2, ..., tl ∈ T1(z̄), l ≤ n + 1, such that λ̄ is an optimal solution of SIMPEC-LD(z̄) and
the respective objective values are equal.

Proof. Since z̄ is a local optimal solution of (SIMPEC) and the NNAMCQ is satisfied
at z̄. From Theorem 3, M-stationary conditions for (SIMPEC) are satisfied, that is,
there exist λ̄ = (λ̄1, λ̄h, λ̄G, λ̄H) ∈ Rl+q+2m and indices t1, t2, ..., tl ∈ T1(z̄), l ≤ n + 1,
such that the following conditions hold:

∇ f (z̄) +

l∑
i=1

λ̄1i ∇1(z̄, ti) +

q∑
j=1

λ̄h
j∇h j(z̄) −

m∑
i=1

[λ̄G
i ∇Gi(z̄) + λ̄H

i ∇Hi(z̄)] = 0, (9)

λ̄1T1 ≥ 0, λ̄G
γ = 0, λ̄H

α = 0, (10)

∀i ∈ β either λ̄G
i > 0, λ̄H

i > 0 or λ̄G
i λ̄

H
i = 0. (11)

Therefore, λ̄ is a feasible solution for SIMPEC-LD(z̄).
By the convexity of f at z̄ on P, we obtain the following inequality for any z ∈ P

f (z) − f (z̄) ≥ 〈∇ f (z̄), z − z̄〉. (12)
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Similarly, we have

1(z, ti) − 1(z̄, ti) ≥ 〈∇1(z̄, ti), z − z̄〉, ∀ti ∈ T1(z̄), (13)

h j(z) − h j(z̄) ≥ 〈∇h j(z̄), z − z̄〉, ∀ j ∈ J+, (14)

−h j(z) + h j(z̄) ≥ −〈∇h j(z̄), z − z̄〉, ∀ j ∈ J−, (15)

−Gi(z) + Gi(z̄) ≥ −〈∇Gi(z̄), z − z̄〉, ∀i ∈ α+
∪ β+

∪ β+
H, (16)

−Hi(z) + Hi(z̄) ≥ −〈∇Hi(z̄), z − z̄〉, ∀i ∈ α+
∪ β+

∪ β+
G. (17)

Ifα−∪γ−∪β−G∪β
−

H = ∅, multiplying (13)-(17), by λ̄1i ≥ 0 (ti ∈ T1(z̄)), λ̄h
j > 0 ( j ∈ j+),

−λ̄h
j > 0 ( j ∈ j−), λ̄G

i > 0 (i ∈ α+
∪ β+

∪ β+
H), λ̄H

i > 0
(i ∈ γ+

∪ β+
∪ β+

G), respectively and adding (12)-(17), we get

f (z) − f (z̄) +

l∑
i=1

λ̄1i 1(z, ti) −
l∑

i=1

λ̄1i 1i(z̄, ti) +

q∑
j=1

λ̄h
j h j(z) −

q∑
i=1

λ̄h
j h j(z̄)

−

m∑
i=1

λ̄G
i Gi(z) +

m∑
i=1

λ̄G
i Gi(z̄) −

m∑
i=1

λ̄H
i Hi(z) +

m∑
i=1

λ̄H
i Hi(z̄)

≥

〈
∇ f (z̄) +

l∑
i=1

λ̄1i ∇1(z̄, ti) +

q∑
j=1

λ̄h
j∇h j(z̄) −

m∑
i=1

[λ̄G
i ∇Gi(z̄) +

λ̄H
i ∇Hi(z̄)], z − z̄

〉
. (18)

From (9) and (18), for all z ∈ P, we get

f (z) − f (z̄) +

l∑
i=1

λ̄1i 1(z, ti) −
l∑

i=1

λ̄1i 1i(z̄, ti) +

q∑
j=1

λ̄h
j h j(z) −

q∑
i=1

λ̄h
j h j(z̄)

−

m∑
i=1

λ̄G
i Gi(z) +

m∑
i=1

λ̄G
i Gi(z̄) −

m∑
i=1

λ̄H
i Hi(z) +

m∑
i=1

λ̄H
i Hi(z̄) ≥ 0.

That is,

LSIMPEC(z, λ̄) ≥ LSIMPEC(z̄, λ̄), ∀ z ∈ P. (19)

Using the index sets and M-stationary condition (10) and (11) the following equal-
ity holds:

l∑
i=1

λ̄1i 1(z̄, ti) +

q∑
j=1

λ̄h
j h j(z̄) −

m∑
i=1

[λ̄G
i Gi(z̄) + λ̄H

i Hi(z̄)] = 0.
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Then, we get

f (z̄) = LSIMPEC(z̄, λ̄) = ϕ(λ̄), (20)

by weak duality theorem, we get

ϕ(λ) ≤ f (z̄), ∀ λ ∈ PD(z̄). (21)

From (20) and (21), we get

ϕ(λ) ≤ ϕ(λ̄), ∀ λ ∈ PD(z). (22)

Thus, λ̄ ∈ PD(z̄) is a global optimal solution of SIMPEC-LD (z̄). Optimal values of
(SIMPEC) and the SIMPEC-LD(z̄) are equal.
The following example illustrates the result of Theorem 11.

Example 12. Consider the following (SIMPEC):

min f (z) = z2
1 + z2

2

subject to 1(z, t) = −z1 − z2 + t ≤ 0, ∀t ∈ [−1, 0],
G1(z) = z1 ≥ 0,
H1(z) = z2 ≥ 0,

G1(z).H1(z) = z1.z2 = 0.

The feasible region of the above problem is given by

P = {(z1, z2) ∈ R2 : z1 ≥ 0, z2 ≥ 0, z1.z2 = 0}.

It is clear that z̄ = (0, 0) is local optimal solution of the above problem. Since there are no
nonnegative (λ1, λG, λH), different from zero such that

λ1∇1(z, 0) − λG
∇G1(z) − λHH1(z) = λ1

[
−1
−1

]
− λG

[
1
0

]
− λH

[
0
1

]
=

[
0
0

]
.

That is, NNAMCQ is satisfied at z̄ = (0, 0). We define the Lagrangian as follows

LSIMPEC(z̄) = f (z) + λ11(z, 0) − λGG1(z) − λHH1(z).

Therefore, we have

ϕ(λ1, λG, λH) = minz∈R2 LSIMPEC(z, λ1, λG, λH)

= −
(λ1 + λG)2

4
−

(λ1 + λH)2

4
.

Let P = ∪i=1,2,3Pi,

where P1 = {(z1, z2) : z1 > 0, z2 = 0},
P2 = {(z1, z2) : z1 = 0, z2 = 0},
P3 = {(z1, z2) : z1 = 0, z2 > 0}.
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We get the following three Lagrange type problems:
For any z ∈ P1,

SIMPECLD1(z̄) maxϕ(λ1, λG, λH)
subject to λ1 ≥ 0, λG = 0, λH

∈ R.

For any z ∈ P2,

SIMPECLD2(z̄) maxϕ(λ1, λG, λH)
subject to λ1 ≥ 0, either λG > 0, λH > 0 or λGλH = 0.

For any z ∈ P3,

SIMPECLD3(z̄) maxϕ(λ1, λG, λH)
subject to λ1 ≥ 0, λG

∈ R, λH = 0.

Let P1
D,P

2
D and P3

D be the feasible regions of the SIMPECLD1(z̄), SIMPECLD2(z̄) and
SIMPECLD3(z̄), respectively. Also, we have

SIMPECLD maxϕ(λ1, λG, λH) = −
(λ1 + λG)2

4
−

(λ1 + λH)2

4
subject to (λ1, λG, λH) ∈ PD,

where PD = ∩z∈Pi,i=1,2,3Pi
D(z) = {(λ1, λG, λH) ∈ R3

| λ1 ≥ 0, λG = 0, λH = 0}, is the
feasible region of the above SIMPECLD. It is easy to see that for any (z1, z2) ∈ P, and
(λ1, λG, λH) ∈ PD,

z2
1 + z2

2 = −
(λ1 + λG)2

4
−

(λ1 + λH)2

4
, (23)

is only possible for z1 = 0, z2 = 0 and λ1 = 0, λG = 0, λH = 0. Since z̄ = (0, 0) is a
local (global) solution for (SIMPEC) and all assumptions of Theorem 3 hold at z̄ therefore
by Theorem 3, there exists (λ̄1, λ̄G, λ̄H) with λ̄1 = 0, λ̄G = 0, λ̄H = 0, such that strong
duality hold.

4. SADDLE POINT OPTIMALITY CONDITIONS FOR SIMPEC

In this section, we define saddle point condition for (SIMPEC) and establish
the relationships between strong duality and saddle point conditions.

Definition 13. A point (z̄, λ̄) with z̄ ∈ P and λ̄ ∈ PD(z̄) is said to be saddle point for the
Lagrange function LSIMPEC, if

LSIMPEC(z̄, λ) ≤ LSIMPEC(z̄, λ̄) ≤ LSIMPEC(z, λ̄),

holds for all z ∈ P and λ ∈ PD(z̄).
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Theorem 14. Let z̄ be a local optimal solution of the (SIMPEC) and the condi-
tions of strong duality theorem hold, then there exists λ̄ ∈ Rl+q+2m and indices
t1, t2, ..., tl ∈ T1(z̄), l ≤ n + 1, such that (z̄, λ̄) is a saddle point of LSIMPEC(z, λ).Moreover,
if (z̄, λ̄) ∈ P × PD(z̄) is (SIMPEC) Lagrange saddle point, then ϕ(λ̄) = f (z̄), where z̄ and
λ̄ are optimal solutions to the primal (SIMPEC) and dual SIMPEC-LD (z̄), respectively.

Proof. From (19), we have for all z ∈ P,

LSIMPEC(z̄, λ̄) ≤ LSIMPEC(z, λ̄). (24)

From (20) the following inequality holds:

LSIMPEC(z̄, λ̄) = f (z̄)

≥ f (z̄) +

l∑
i=1

λ1i 1(z̄, ti) +

q∑
j=1

λh
j h j(z̄) −

m∑
i=1

[λG
i Gi(z̄) + λH

i Hi(z̄)],

that is, for all λ ∈ PD(z̄), we have

LSIMPEC(z̄, λ) ≤ LSIMPEC(z̄, λ̄). (25)

From (24) and (25), (z̄, λ̄) is a saddle point of LSIMPEC(z, λ).
Let (z̄, λ) ∈ P × PD(z̄) is (SIMPEC) saddle point, hence

LSIMPEC(z̄, λ) ≤ LSIMPEC(z̄, λ̄), ∀λ ∈ PD(z̄),

f (z̄) +

l∑
i=1

λ1i 1(z̄, ti) +

q∑
j=1

λh
j h j(z̄) −

m∑
i=1

[λG
i Gi(z̄) + λH

i Hi(z̄)]

≤ f (z̄) +

l∑
i=1

λ̄1i 1(z̄, ti) +

q∑
j=1

λ̄h
j h j(z̄) −

m∑
i=1

[λ̄G
i Gi(z̄) + λ̄H

i Hi(z̄)]. (26)

Setting λ = 0 in (26), we get

l∑
i=1

λ̄1i 1(z̄, ti) +

q∑
j=1

λ̄h
j h j(z̄) −

m∑
i=1

[λ̄G
i Gi(z̄) + λ̄H

i Hi(z̄)] ≥ 0. (27)

Since (z̄, λ̄) ∈ P × PD(z̄), hence

l∑
i=1

λ̄1i 1(z̄, ti) +

q∑
j=1

λ̄h
j h j(z̄) −

m∑
i=1

[λ̄G
i Gi(z̄) + λ̄H

i Hi(z̄)] ≤ 0. (28)

From (27) and (28), we get

l∑
i=1

λ̄1i 1(z̄, ti) +

q∑
j=1

λ̄h
j h j(z̄) −

m∑
i=1

[λ̄G
i Gi(z̄) + λ̄H

i Hi(z̄)] = 0. (29)
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Also, we have LSIMPEC(z̄, λ̄) ≤ LSIMPEC(z, λ̄), therefore

ϕ(λ̄) = min
z∈P

LSIMPEC(z, λ̄)

= LSIMPEC(z̄, λ̄)
= f (z̄).

By Corollary 9 of Theorem 6, z̄ and λ̄ are, respectively, optimal solutions to the
primal (SIMPEC) and dual SIMPECLD(z̄).

The following theorem shows the relationship between Lagrange saddle point
for (SIMPEC) and M-stationary point for (SIMPEC).

Theorem 15. Let z̄ be a feasible point of the (SIMPEC) and the M-stationary condition
holds at z̄. Suppose that f , 1(., ti) (ti ∈ T1), h j ( j ∈ J+), Gi (i ∈ α−∪β−H), Hi (i ∈ γ−∪β−G),
−h j ( j ∈ J−), −Gi (i ∈ α+

∪ β+
∪ β+

H), −Hi (i ∈ γ+
∪ β+

∪ β+
G) are convex at z̄ on

P. If α− ∪ γ− ∪ β−G ∪ β
−

H = ∅, then there exists λ̄ ∈ Rl+q+2m and indices t1, t2, ..., tl ∈

T1(z̄), l ≤ n + 1, such that (z̄, λ̄) such that (z̄, λ̄) is a saddle point of LSIMPEC(z̄). Further,
let (z̄, λ̄) ∈ P × PD(z̄) and if (z̄, λ̄) is saddle point of LSIMPEC(z, λ), then z̄ is M-stationary
point.

Proof. We have

LSIMPEC(z, λ̄) − LSIMPEC(z̄, λ̄) = f (z) +

l∑
i=1

λ̄1i 1(z, ti) +

q∑
j=1

λ̄h
j h j(z)

−

m∑
i=1

[λ̄G
i Gi(z) + λ̄H

i Hi(z)] − f (z̄) −
l∑

i=1

λ̄1i 1(z̄, ti) −
q∑

j=1

λ̄h
j h j(z̄)

+

m∑
i=1

[λ̄G
i Gi(z̄) + λ̄H

i Hi(z̄)].

Since f , 1(., ti) (ti ∈ T1), h j ( j ∈ J+), Gi (i ∈ α− ∪ β−H), Hi (i ∈ γ− ∪ β−G), −h j ( j ∈
J−), −Gi (i ∈ α+

∪ β+
∪ β+

H), −Hi (i ∈ γ+
∪ β+

∪ β+
G) are convex functions at z̄ on P

and α− ∪ γ− ∪ β−G ∪ β
−

H = ∅. Then, we get

LSIMPEC(z, λ̄) − LSIMPEC(z̄, λ̄) ≥
〈
∇ f (z̄) +

l∑
i=1

λ̄1i ∇1(z̄, ti) +

q∑
j=1

λ̄h
j∇h j(z̄)

−

m∑
i=1

[λ̄G
i ∇Gi(z̄) + λ̄H

i ∇Hi(z̄)], z − z̄
〉
.

Since, M-stationary condition holds at z̄, then from (1), we get

LSIMPEC(z, λ̄) ≥ LSIMPEC(z̄, λ̄). (30)
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LSIMPEC(z̄, λ) = f (z̄) +

l∑
i=1

λ1i 1(z̄, ti) +

q∑
j=1

λh
j h j(z̄) −

m∑
i=1

[λG
i Gi(z̄) + λH

i Hi(z̄)]

≤ f (z̄)

= f (z̄) +

l∑
i=1

λ̄1i 1(z̄, ti) +

q∑
j=1

λ̄h
j h j(z̄) −

m∑
i=1

[λ̄G
i Gi(z̄) + λ̄H

i Hi(z̄)]

= LSIMPEC(z̄, λ̄).

Then,

LSIMPEC(z̄, λ̄) ≥ LSIMPEC(z̄, λ), ∀λ ∈ PD(z̄). (31)

Hence, (z̄, λ̄) is a saddle point of LSIMPEC(z, λ).
Since (z̄, λ̄) ∈ P × PD(z̄) is (SIMPEC) saddle point, hence

LSIMPEC(z̄, λ) ≤ LSIMPEC(z̄, λ̄), ∀λ ∈ PD(z̄). (32)

Therefore, from (27), we get

l∑
i=1

λ̄1i 1(z̄, ti) +

q∑
j=1

λ̄h
j h j(z̄) −

m∑
i=1

[λ̄G
i Gi(z̄) + λ̄H

i Hi(z̄)] = 0. (33)

From (33) and feasibility of λ̄ ∈ PD(z̄), we get

λ̄1j ≥ 0, j < T1, λ̄G
γ = 0, λ̄H

α = 0, (34)

∀i ∈ β either λ̄G
i > 0, λ̄H

i > 0 or λ̄G
i λ̄

H
i = 0. (35)

Also, we have LSIMPEC(z̄, λ̄) ≤ LSIMPEC(z, λ̄), ∀z ∈ P.
Then,

ϕ(λ̄) = min
z∈P

LSIMPEC(z, λ̄) = LSIMPEC(z̄, λ̄).

Therefore, we get

∇zLSIMPEC(z̄, λ̄) = 0,

that is,

∇ f (z̄) +

l∑
i=1

λ̄1i ∇1(z̄, ti) +

q∑
j=1

λ̄h
j∇h j(z̄) −

m∑
i=1

[λ̄G
i ∇Gi(z̄) + λ̄H

i ∇Hi(z̄)] = 0. (36)

Therefore, from (34), (35) and (36), z̄ is M-stationary point.
The following example illustrates the result of Theorem 15.
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Example 16. Consider the (SIMPEC) problem

min f (z) = z1 + z2

subject to 1(z, t) = z1 − 2z2 − 1 − t ≤ 0, ∀t ∈ [0, 1],
G1(z) = z1 ≥ 0,
H1(z) = −z2

1 − z2
2 + 1 ≥ 0,

G1(z).H1(z) = z1.(−z2
1 − z2

2 + 1) = 0.

The feasible region is given as:

P = {(z1, z2) ∈ R2 : z1 − 2z2 ≤ 1, z1 ≥ 0, −z2
1 − z2

2 + 1 ≥ 0, z1.(−z2
1 − z2

2 + 1) = 0}.

Since z̄ = (0,− 1
2 ) is feasible (global optimal) point and for λ̄ = (λ1, λG, λH) = ( 1

2 ,
3
2 , 0)

M-stationary condition holds and satisfies the assumption of Theorem 5 at z̄. In addition,
for

LSIMPEC(z, λ) = f (z) + λ11(z, 0) − λGG1(z) − λHH1(z),

the following inequality holds

LSIMPEC(z̄, λ) ≤ LSIMPEC(z̄, λ̄) ≤ LSIMPEC(z, λ̄),

for any (λ, z). Hence, Theorem 15 is verified.

5. CONCLUSIONS

We proposed a Lagrange type dual model for the semi-infinite mathematical
programming problems with equilibrium constraints. We established weak and
strong duality results under convexity assumptions. Further, we discussed the
saddle point optimality conditions for the (SIMPEC). We illustrated the obtained
results with the help of suitable examples. The Lagrange type dual model for
(SIMPEC) is easier to deal than the Wolfe and Mond-Weir type dual models for
(SIMPEC) since the weak duality results in Lagrange type model for (SIMPEC)
do not require any convexity assumptions and the constraints set do not involve
nonlinear stationarity conditions.
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