
Yugoslav Journal of Operations Research
30 (2020), Number 1, 45–57
DOI: https://doi.org/10.2298/YJOR190615024D

SOME ASPECTS ON SOLVING
TRANSPORTATION PROBLEM

A. K. DAS
SQC & OR Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700 108,

India
akdas@isical.ac.in

DEEPMALA
Mathematics discipline, Indian Institute of Information Technology, Design &

Manufacturing Dumna Airport Road, Jabalpur, 482 005, India
dmrai23@gmail.com

R. JANA
SQC & OR Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700 108,

India
rwitamjanaju@gmail.com

Received: June 2019 / Accepted: September 2019

Abstract: In this paper, we consider a class of transportation problems which arises
in sample surveys and other areas of statistics. The associated cost matrices to these
transportation problems are of special structure. We observe that the optimality of
North West corner solution holds for the problem where cost component is replaced by
a convex function. We revisit assignment problem and present a weighted version of
König-Egerváry theorem. Finally, we propose weighted Hungarian method to solve the
transportation problem.
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1. INTRODUCTION

A transportation model is a bipartite graph G = (A ∪ B,E), where A =
{O1, · · · , Om} is the set of source vertices, B = {D1, · · · , Dn} is the set of desti-
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nation vertices and E is the set of edges from A to B. Each edge (i, j) ∈ E has
an associated cost cij . The problem is to find out a flow of least costs regarding
shipment that ships from supply sources Oi, i = 1, · · · ,m to consumer destina-
tions Dj , j = 1, · · · , n. Suppose ai is the supply at the ith source Oi and bj is
the demand at the jth destination Dj . In a balanced transportation problem, we

assume that

m∑
i=1

ai =

n∑
j=1

bj . Let xij be the quantity to be shipped from origin Oi

to destination Dj with cost cij . The transportation problem can be formulated as
a linear programming problem to determine a shipping schedule that minimizes
the total cost of shipment which is given below.

minimize
∑
i∈A

∑
j∈B

cijxij

subject to ∑
j∈B

xij = ai, ∀ i ∈ A∑
i∈A

xij = bj , ∀ j ∈ B

xij ≥ 0, i ∈ A, j ∈ B.

Transportation problems have wide range of applications in logistic systems
[50], human resources management [12], production planning [41], routing prob-
lems [52] and many other related areas. In real life situations, the traditional
transportation problems deal with several issues such as selection of sources and
delivery routes given the destinations, handling and packing, financing and in-
surance, duty and taxes, and is related to other operations such as selection of
production place and capacity, decision on outsourcing of production and hiring
human capital.

Transportation problems uniformly follow a special mathematical structure in
their constraints and objective functions. Because of their special structure, they
are solved by an approach different from simplex method. The approach consists
of two phases. In phase one, a feasible solution of the transportation problem is
found. A well known phase one method is North West corner rule. In phase two,
optimal solution based on the identified feasible solution is found. Phase two is
basically a primal-dual method.

The motivation of this study is to address the following two questions:

(i) Is there any instance of transportation problem for which the feasible solution
obtained by North West corner rule becomes the optimal solution?

(ii) Is there any single phase method which can solve transportation problem?

The paper is organized as follows. In section 2, we present a literature review of
the wide algorithms used for solving various transportation problems. In section 3,
we consider a class of transportation problems and its application in statistics. We
discuss various structures and solution methods of this class. We present an elegant
proof of the result that the North West corner rule provides an optimal solution to
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the transportation problems under some conditions. In section 4, we consider the
assignment problem and present a weighted version of König-Egerváry theorem
and Hungarian method. We present minimum cut - maximum flow theorem of
Ford and Fulkerson [22] in a different way so that in a bipartite graph, finding
a minimum weight vertex cover is equivalent with finding a minimum cut if the
capacity of an edge is given by the minimum weight of its end nodes. We establish a
connection between transportation problem and assignment problem, and propose
a weighted Hungarian method to solve the transportation problem. We show
that the weighted Hungarian method is formulated based on primal-dual method
for solving minimum cost network flow problems. We provide an illustration to
demonstrate our result. Section 5 presents the conclusion of the paper.

2. LITERATURE REVIEW

The section presents a survey of the computational methods used to solve var-
ious transportation problems. There are diverse types of transportation models
documented in the literature, for details, see [3]. Øvstebø et al. [43] present an
optimization model for RoRo ship stowage problem which is closely related to
maritime transportation problems. Fagerholt [20] provides optimal fleet design in
a ship routing problems. Routing problems are very well known class of trans-
portation problems. Oil tanker routing and scheduling problems are two kinds
of important transportation problems, for details, see [13]. Air transportation is
another branch of transportation problems which include air traffic flow manage-
ment problem, helicopter routing problem, airline crew scheduling problem and oil
platform transport problem, for details, see [27], [21], [4] and [15]. The variants of
the routing problems include convoy routing problem [25], inventory routing prob-
lem [37], school bus routing problem [42], truck and trailer routing problem [48],
bus scheduling problem [32] and vehicle routing problem [52], for further details,
see [14]. Pamucar and Ćirović [44] have used an adaptive neuro fuzzy inference
system in uncertainty conditions on selection of vehicle routing problem. Among
many facets of research in transportation problems, one that has received extensive
attention in recent years is the development of efficient algorithms. Souffriau [49]
proposed a greedy randomized adaptive search procedure (GRASP) for solving the
team orienteering problem (TOP) which is a particular routing problem to earn a
score for visiting a location. Tabu search technique is used to solve team orienting
problem as well as truck and trailer routing problem, details in [23]. Archetti
et al. [6] used branch and cut algorithm to solve inventory routing problem.
Popović et al. [45] proposed a variable neighborhood search (VNS) algorithm to
solve a multi-product multi-period inventory routing problem in which fuel deliv-
ery with multi-compartment homogeneous vehicles and deterministic consumption
vary with each petrol station and each fuel type. Hoffman and Padberg [30] showed
that branch and cut technique can be used to solve airline crew scheduling prob-
lem. Emden-Weinert and Proksch [18] proposed a simulated annealing algorithm
for the airline crew pairing problem based on a run-cutting formulation. Ghanbari
and Mahdavi-Amiri [24] proposed an evolutionary algorithm to solve bus terminal
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location problem. Vignaux and Michalewicz [53] proposed a genetic algorithm
for solving the linear transportation problem. Michalewicz et al. [39] described
a nonstandard genetic algorithm approach to solve the nonlinear transportation
problem. The D-R model is a technique to minimize the cost and a variety of
risk criteria in hazmat routing and minimizes the number of risks on potential
routes. Ebrahimi and Tadic [16] proposed a model based on a multi-criteria risk
analysis and the traditional Dijkstra algorithm (D-R model). Roy et al. [47] pro-
posed a memetic genetic algorithm for solving traveling salesman problem (TSP)
which is related to different type of transportation problem. Barma et al. [8]
studied multi depot vehicle routing problem (MDVRP) and presented a discrete
antli-on optimization algorithm (DALO) to minimize the total routing distance
of the MDVRP. Adhikary et al. [1] presented newsboy problem with birandom
demand. Anholcer [2] considered stochastic generalized transportation problem
with random discretely distributed demand. Kuhn [34] presented variants of the
Hungarian method for solving assignment problems. In this paper we propose a
weighted Hungarian method to solve linear transportation problems.

3. TRANSPORTATION PROBLEM AND ITS APPLICATIONS in
STATISTICS

Transportation problem arises in various applications of Sample Surveys and
Statistics, details in [7]. The cost matrices associated with these transportation
problems are of special structure. Now, we raise the following question. What are
the structure of the cost matrix for which North West corner solution produces an
optimal solution? We consider some of the structures of the cost matrix which arise
in some of the applications in the literature. Hoffman [28] studied transportation
problem in the context of North West Corner Rule. Burkard et al. [9] mentioned
Monge properties in connection with the transportation problem. Szwarc [51]
developed direct methods for solving transportation problems with cost coefficients
of the form cij = xi + xj , having applications in shop loading and aggregate
scheduling.

Evans [19] studied factored transportation problem in which cost coefficients
are factorable, i.e., cij = xixj . It is shown that the rows and columns can easily
be ordered so that the North West corner rule provides an optimal solution of
the transportation problem. We state some of the results of Evans [19] which are
needed in the sequel.

Lemma 3.1. [19] The North West corner rule produces an optimal solution of
the balanced transportation problem whenever cij + crs ≤ crj + cis for all i, j, r, s
such that i < r and j < s.

Szwarc [51] showed that if cij = xi + yj then any feasible solution is optimal.
Raj [46] studied the problem of integration of surveys, i.e., the problem of designing
a sampling program for two or more surveys which maximizes the overlap between
observed samples as a transportation problem and shows that the solution is just
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the North West corner solution of the transportation problem and this is optimal
when cij = |i − j|. For the connection between integration of surveys and the
transportation problem see Matei and Tillé [38], Aragon and Pathak [5], Causey et
al. [10] and Raj [46]. In this context, Burkard et al. [9] studied several perspectives
of Monge properties in optimization. Mitra and Mohan [40] observed that the
North West corner solution is optimal for the following problem.

Suppose X and Y are two discrete random variables which assume values
x1 ≤ x2 ≤ · · · ≤ xm and y1 ≤ y2 ≤ · · · ≤ yn respectively. Let pi· = Prob(X =
xi) and p·j = Prob(Y = yj). The problem is to find out the joint probabilities
pij = Prob(X = xi, Y = yj) so that Cov(X,Y ) is maximum. This problem can
be formulated as a transportation problem as follows.

Given values of random variables X, Y, pi·, p·j , the problem is to find pij ,
1 ≤ i ≤ m, 1 ≤ j ≤ n which

minimize
∑
i

∑
j

(xi − yj)2 pij

subject to ∑
j

pij = pi·, 1 ≤ i ≤ m∑
i

pij = p·j , 1 ≤ j ≤ n

pij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

In this article, we consider a more general problem and show that the optimality
of North West corner solution holds.

Suppose f : R→ R is a convex function. Let cij = f(xi − yj). Given values of
random variables X, Y , pi·, p·j , the problem is to find pij , 1 ≤ i ≤ m, 1 ≤ j ≤ n
for the Problem P which is stated as follows:

Problem P : minimize
∑
i

∑
j

f(xi − yj) pij

subject to ∑
j

pij = pi·, 1 ≤ i ≤ m∑
i

pij = p·j , 1 ≤ j ≤ n

pij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Let us define a set B = {(i, j) | pij is a basic variable}. Note that if B is the
basis set and if the basic solution to P corresponding to the set B is also feasible,
it is optimal if and only if there exist αi, 1 ≤ i ≤ m, βj , 1 ≤ j ≤ n such that

αi + βj = cij if (i, j) ∈ B (3.1)

αi + βj ≤ cij if (i, j) /∈ B. (3.2)

Now we prove the following theorem.
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Theorem 3.2. Consider the problem P. Let x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤
· · · ≤ yn be given numbers and cij = f(xi−xj) where f : R→ R is convex. Then
the North West corner solution is optimal for Problem P.

Proof. Suppose i < r and j < s. Let x1 ≤ x2 ≤ · · · ≤ xi ≤ · · · ≤ xr ≤ · · · ≤ xn
and y1 ≤ y2 ≤ · · · ≤ yj ≤ · · · ≤ ys ≤ · · · ≤ yn be given numbers. It is shown that

xi − ys ≤ xi − yj ≤ xr − yj

xi − ys ≤ xr − ys ≤ xr − yj .

Then there exist 0 ≤ λ ≤ 1 and 0 ≤ µ ≤ 1 such that

xi − yj = λ(xi − ys) + (1− λ)(xr − yj)

xr − ys = µ(xi − ys) + (1− µ)(xr − yj).

Table 1: North West corner rule solution
· · · j · · · k · · · l · · · s · · ·

.

.

.
i ∗ (i, s)

.

.

.
.
.
.

p ∗ · · · ∗
.
.
.

.

.

.
q ∗ · · · ∗
.
.
.

.

.

.
r ∗ · · · ∗
.
.
.

However since xi − yj + xr − ys = (λ + µ)(xi − ys) + (2 − λ − µ)(xr − yj), it
follows that λ+ µ = 1. Therefore, by convexity of f

f(xi − yj) ≤ λf(xi − ys) + (1− λ)f(xr − yj)

f(xr − ys) ≤ µf(xi − ys) + (1− µ)f(xr − yj)

f(xi − yj) + f(xr − ys) ≤ (λ+ µ)f(xi − ys)

+(2− λ− µ)f(xr − yj).

Using λ + µ = 1 and cij = f(xi − xj) it follows that cij + crs ≤ cis +
crj for all i, j, r, s such that i < r and j < s. By Lemma 3.1, it follows that the
North West corner rule produces an optimal solution.

Corollary 3.3. In problem P, suppose cij = (xi − xj)
2 or cij = |i − j|. Then

North West corner solution is an optimal solution for Problem P.
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4. TRANSPORTATION PROBLEM AND A WEIGHTED VERSION
OF KÖNIG-EGERVÁRY THEOREM

An assignment problem is a special case of a balanced transportation problem
where m = n, ai = 1, ∀ i ∈ A and bj = 1, ∀ j ∈ B. Various generalizations
of transportation problem have been appeared in the literature. For details, see
Goossens and Spieksma [26], Kasana and Kumar [29], Liu and Zhang [36] and the
references cited therein. We consider the cardinality of a maximum matching and
the size of a minimum vertex cover in a bipartite graph. Consider the entries of a
matrix A = (aij) ∈ Rn×n as points and a row or a column as a line. A set of points
is said to be independent if none of the lines of the matrix contains more than one
point in the set. Suppose T is an independent set of points. Then an element of
T is said to be an independent point. König-Egerváry theorem (Egerváry [17],
König [31]) is stated as follows:

Theorem 4.1. ([17], [31]) Let S be a nonempty subset of points of a matrix
A = (aij) ∈ Rn×n, then the maximum number of independent points that can be
selected in S is equal to the minimum number of lines covering all points in S.

König-Egerváry theorem is used to obtain Hungarian method, and it is used
to prove the finite convergence of the Hungarian method for linear assignment
problem. Suppose that C̄ = [c̄ij ] ∈ Rn×n is a cost matrix of the assignment

problem. We obtain a reduced cost matrix C̄
′

of order n by subtracting the
smallest element in each row and then subtracting the smallest element in each
column. Note that all the elements of C̄

′
are non-negative and there is at least

one zero in every row and every column. Recall that any two zero is said to be
independent if they do not lie in the same line. Let t be the number of independent
zeros in the reduced cost matrix C̄

′
and t ≤ n. The König-Egerváry theorem states

that maximum cardinality of an independent set of 0’s is equal to minimum number
of lines to cover all 0’s.

In this section, we describe a weighted version of König-Egerváry theorem
and use it to provide a weighted Hungarian method for solving a transportation
problem. This states minium cut - maximum flow theorem of Ford and Fulkerson
in a different way. Accordingly, a standard transportation problem can also be
written as a linear assignment problem as follows:

Let S1 = {1, 2, · · · , a1}, T1 = {1, 2, · · · , b1},

Sr = {
r−1∑
j=1

aj + 1,

r−1∑
j=1

aj + 2, · · · ,
r∑

j=1

aj}, 2 ≤ r ≤ m and

Ts = {
s−1∑
j=1

bj + 1,

s−1∑
j=1

bj + 2, · · · ,
s∑

j=1

bj}, 2 ≤ s ≤ n.

Let η =

m∑
i=1

ai =

n∑
j=1

bj . Consider a linear assignment problem in which total num-

ber of machines is equal to total number of jobs (η). Let C = (cij) ∈ Rm×n be the
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cost matrix of the transportation problem. We construct a cost matrix C̃ = (c̃ij)
by copying Ci·, ai times for i = 1, · · · ,m and C·j , bj times for j = 1, · · · , n. Thus

C̃p· = Cl· ∀ p ∈ Sl, C̃·p = C·l ∀ p ∈ Tl. The matrix constructed in this manner

leads to a square cost matrix C̃ of order η × η for the linear assignment problem.
So we arrive at an equivalent assignment problem of the transportation problem.
Now looking at the equivalent linear assignment problem, we observe to see that
there are mn blocks in C̃ where (ij)th block is of size ai× bj consisting of identical
entries cij .

We explore the possibility of extending the Hungarian method for a trans-
portation problem using the original cost matrix C of order m × n. Note that in
C̃, (ij)th block of size ai × bj consisting of identical entries cij can be treated as
a single entry in C in the (ij)th position. We provide a weight ai for the ith row
in C and a weight bj for the jth column in C. We now state a weighted version of
König-Egerváry theorem.

In this theorem we use the following terminology. The entries of a matrix
C = (cij) ∈ Rm×n are called blocks. The ith row Ci· is known as a horizontal line
with weight ai and C·j, the jth column is a vertical line with weight bj . A set of
blocks is said to be independent if none of the lines of the matrix contains more
than one block in the set. Suppose Λ is an independent set of blocks. Then an
element of Λ is said to be an independent block.

Now we prove the following theorem.

Theorem 4.2. If Ω is a nonempty subset of the blocks of a matrix C, then the
maximum number of independent blocks that can be selected in Ω is equal to the
lines with minimum total weight covering all the blocks in Ω.

Proof. Note that in C, a horizontal line with weight ai is equivalent to ai rows
and a vertical line with weight bj is equivalent to bj columns in C̃. Let Ω̃ be a

nonempty subset of points of a matrix C̃. Now by Theorem 4.1, the maximum
number of independent points that can be selected in Ω̃ is equal to the minimum
number of lines covering all elements in Ω̃. Now in C̃, drawing ai horizontal lines is
equivalent to drawing a horizontal line with weight ai in C. Similarly in C̃, drawing
bj vertical lines is equivalent to drawing a vertical line with weight bj in C. Since
we do not distinguish between horizontal and vertical lines, the maximum number
of independent blocks that can be selected in Ω is equal to the lines with minimum
total weight covering all blocks of Ω.

The Hungarian method for the linear assignment problem was developed by
Kuhn [33] which has computational complexity O(n4). Lawler [35] developed an
order O(n3) version of the algorithm. Cechlárová [11] observed that in practical
situations, it may be useful to get an overall picture about all the optima as well
and obtains a generalization of the Berge’s theorem.

We now apply weighted version of König-Egerváry theorem to get an weighted
Hungarian method for solving transportation problems. Note that by weighted
König-Egerváry theorem, maximum number of independent zero blocks that can
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be selected is equal to the lines with minimum total weight covering all the blocks.
We describe the weighted Hungarian method based on weighted König-Egerváry
theorem for solving the transportation problem.

The basic steps of the weighted Hungarian method are the same as in Hun-
garian method. The termination rule is as in Theorem 4.2, i.e., the weights of the
lines drawn with minimum total weight is equal to η. Therefore, the proof of finite
convergence also follows from Theorem 4.2.

We provide the basic steps of the weighted Hungarian method for solving the
transportation problem:

Step 1: Get the reduced cost matrix by subtracting the smallest element in each
row and then subtracting the smallest element in each column.

Step 2: Draw lines with minimum total weight to cover all zero blocks. Let the
total weight of the lines drawn be ζ.

Step 3: If ζ = η, optimal matrix has been reached. Get an optimal solution
by assigning flows through blocks having zero entries. If ζ < η, find the
minimum of the entries not covered by any line. Let δ be the minimum of
the uncovered entries. Subtract δ from all uncovered entries and add δ to all
entries covered by two lines. With the new matrix go to step 2.

4.1. An illustration

Example 4.3. Consider the following transportation problem.

Table 1

Origin Destination ai

D1 D2 D3 D4

O1 10 7 3 6 3
O2 1 6 8 3 5
O3 7 4 5 3 7
bj 3 2 6 4

First we solve the above transportation problem using two phase method, namely
North West corner rule, to find feasible solution and uv-method (primal-dual
method) to find optimal solution. Note that we obtain x11 = 3, x22 = 2, x23 = 3,
x33 = 3 and x34 = 4 by applying North West corner rule and finally we obtain
x13 = 3, x21 = 3, x24 = 2, x32 = 2, x33 = 3 and x34 = 2 as optimal solution by
applying uv-method.

Now we use the proposed weighted Hungarian method to solve the transporta-
tion problem.

(i) Following the step 1 of the proposed method, we subtract the smallest element
in each row, and the smallest element in each column. We find the reduced cost
matrix as in Table 2.
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Table 2

7−− 3−− 0−− 3
| | |
0 4 7 2
| | |
4 0 2 0

(ii) Now we consider the step 2 of the proposed method. In Table 2, row 1,
column 1, column 2 and column 4 are crossed out. The lines to cover all zeros
with minimum weight (12) is shown in Table 2.

(iii) Now we consider the step 3 of the proposed method. The lines drawn with
minimum total weight is not equal to η = 15. The minimum of the not crossed
out elements is subtracted from these elements and added to the elements which
are on the intersection of two lines. Continuing step 3 for another two iterations
we find the optimal solutions. See Table 3 and 4.

Table 3

9−− 5−− 0−− 5
|
0 4 5 2
|
4−− 0−− 0−− 0

Table 4

11−− 5−− 0−− 5

0−− 2−− 3−− 0

6−− 0−− 0−− 0

We obtain the optimal solution based on the following approach. Inspecting the
rows of the final reduced cost matrix we see that the row 1 contains only one zero
which occurs in the 3rd column. Since min(a1, b3) = a1 = 3, we have x13 = 3.
We cross out row 1 (since no assignment will be made further) and update b3 by
b3−a1 = 3. Now inspecting the columns we see that entry in the column 1 and row
2 contains 0. Since min(a2, b1) = b1 = 3, we have x21 = 3. We cross out column 1.
Continuing in this manner we have x32 = 2, x33 = 3, x24 = 2 and x34 = 2.

Remark 4.4. Note that it is quite likely to arise rows and columns with more
than one zero. We call this phenomenon tie. As a tie breaking rule, we propose to
select rows and columns arbitrarily with minimum number of zeros.

5. CONCLUSION

At the outset, this paper considers some structured transportation problems
which arise in sample surveys and other areas of statistics, and shows that optimal
solution can be obtained by applying the North West corner rule. Subsequently,
we consider a weighted version of König-Egerváry theorem and the corresponding
version of Hungarian method. We propose the weighted Hungarian method to find
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the solution of the transportation problem. The advantage of the proposed method
is to find optimal solution of the transportation problem in a single phase. The
limitation of weighted Hungarian method is mentioned in Remark 4.4. Finally, we
propose a future scope of research on this study stating the following two questions:
(i) Can we identify the instances of transportation problems for which weighted
Hungarian method can find rows and columns uniquely?
(ii) Can the weighted Hungarian method be used to solve nonlinear transportation
problems?
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