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Abstract: We proposed a matrix-free direction with an inexact line search technique to
solve system of nonlinear equations by using double direction approach. In this article,
we approximated the Jacobian matrix by appropriately constructed matrix-free method
via acceleration parameter. The global convergence of our method is established under
mild conditions. Numerical comparisons reported in this paper are based on a set of
large-scale test problems and show that the proposed method is efficient for large-scale
problems.
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1. INTRODUCTION

Systems of nonlinear equations form a family of problems that are equivalent to
unconstrained optimization problems, and they often arise in the fields of science
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and technology. In recent years, researchers have considered various examples in
this areas.

Matrix-free methods are very popular and widely used methods for solving
the system of nonlinear equations. A typical system of nonlinear equations is
represented by

F (x) = 0, (1)

where F : Rn → Rn is a nonlinear map.
Throughout the paper, the space Rn denote the n−dimensional real space equipped
with the Euclidean norm || · ||. More applications of the problem (1) in economic
equilibrium analysis, chemical equilibrium systems, compressive sensing, and con-
trol theory can be found in [14, 17, 21] and in the references therein. Some iterative
methods for solving these problems include Newton and quasi-Newton methods
[3, 12, 15, 18], the Gauss-Newton methods [7, 22], the Levenberg-Marquardt meth-
ods [16, 19, 23], the derivative-free methods [9, 13, 25, 29], the subspace methods
[24], and the tensor methods [26].

The most popular schemes for solving (1) are based on successive lineariza-
tion [3], where the search direction dk is obtained by solving the following linear
equation:

F (xk) + F ′(xk)dk = 0, (2)

where F ′(xk) is the Jacobian matrix of F (xk) at xk or an approximation of it.
The attractive features of Newtons method is easy implementation and rapid con-
vergence [3]. However, this method requires the computation of Jacobian matrix,
which invokes the first-order derivative of the system. It is well known that the
computation of some function derivatives are costly in practice, sometimes they
are not even available or could not be obtained exactly. In this case Newtons
method cannot be directly applied [3, 11].

Based on this fact, the double direction method has been proposed in [2] and
the iterative procedure is given as:

xk+1 = xk + αkbk + α2
kck, (3)

where xk+1 represents a new iterative point, xk is the previous iteration, and
αk > 0 denotes the step length, while bk and ck are search directions, respectively.
We are interested in approximating the Jacobian with diagonal matrix via:

F ′(xk) ≈ γkI,

where I is an identity matrix.
Furthermore, (1) can come from an unconstrained optimization problem, a saddle
point, and equality constrained problem [7]. Let f be a norm function defined by

f(x) =
1

2
‖F (x)‖2. (4)
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The nonlinear equations problem (1) is equivalent to the following global opti-
mization problem

minf(x), x ∈ Rn. (5)

The double direction method is proposed by Duranovic-Milicic [2], where us-
ing multi-step iterative information and curve search to generate new iterative
points. However a double direction method for solving unconstrained optimiza-
tion problem was presented by Petrovic and Stanimirovic [8]. In [9] Halilu and
Waziri incorporated the work in [8] to solve the system of nonlinear equations, and
approximated the Jacobian matrix with diagonal matrix via acceleration parame-
ter. The global convergence of the scheme [9] is established under mild conditions.
Furthermore, in order to improve the numerical performances and global conver-
gence properties of double direction methods, transformation of double step length
scheme is proposed in [5]. Recently, in [6], Halilu and Waziri proposed an enhanced
matrix-free method via double step length approach for solving systems of non-
linear equations. The method was proven to be globally convergent by using the
inexact line search proposed by Li and Fukushima [7]. Therefore, motivated by
[8], we aimed at developing a matrix-free direction method with line search for
solving systems of nonlinear equations, without computing the Jacobian matrix
with less number of iterations and CPU time, that is globally convergent.

There are some known procedures for driving the search directions [1, 11, 12,
28]. The step length αk can also be computed either exact or inexact. It is very
expensive to find exact step length in practical computation. Therefore, the most
frequently used line search in practice is inexact line search [9, 10, 15, 20]. A basic
requirement of the line search is to sufficiently decrease the function values, i.e.,
to establish

‖F (xk+1)‖ ≤ ‖F (xk)‖.

We organized the paper as follows; In the next section, we present the proposed
method, and th convergence results are presented in section 3. Some numerical ex-
periment results are reported in section 4. Finally, we present concluding remarks
in section 5.

2. DETAILS OF THE METHOD

In this section, we propose to reduce the two directions vectors (3) into a single
one. This is made possible by making the two directions to be equal, i.e bk = ck.
We suggest, that the search directions bk and ck in (3) be defined as:

bk = ck = −γ−1k F (xk), (6)

By putting (6) into (3), we obtained

xk+1 = xk − αk(γ−1k (1 + αk))F (xk). (7)
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From (7) we can easily show that our direction is

dk = −(1 + αk)γ−1k F (xk). (8)

We adopt the acceleration parameter used in [5] in order to improve good
direction towards the solution. The technique in [5] generates a sequence of iterates
{xk} such that xk+1 = xk + (αk + 1

2αkγk)dk and the acceleration parameter γk is
obtained by using Taylor’s expansion of the first order as:

γk+1 =
||yk||2

yTk sk
, (9)

with yk = F (xk+1)− F (xk) and sk = xk+1 = xk.
So, from (7) and (8), we have the general scheme as:

xk+1 = xk + αkdk. (10)

We then used the derivative-free line search proposed by Li and Fukushima [7]
in order to compute our step length αk.
Let ω1 > 0, ω2 > 0 and r ∈ (0, 1) be constants and let ηk be a given positive
sequence such that

∞∑
k=0

ηk < η <∞, (11)

and

f(xk + αkdk)− f(xk) ≤ −ω1‖αkF (xk)‖2 − ω2‖αkdk‖2 + ηkf(xk). (12)

Let ik be the smallest non negative integer i such that (12) holds for α = ri. Let
αk = rik .

Now, we describe the algorithm of the proposed method as follows:
Algorithm 1(EMD)
STEP 1: Given x0, γ0 = 0.01, α > 0, ε = 10−4, set k = 0.
STEP 2: Compute F (xk).
STEP 3: Test the stopping criterion. If yes, then stop; otherwise, continue with
Step 4.
STEP 4: Compute search direction dk (using (8)).
STEP 5: Compute step length αk(using (12)).
STEP 6: Set xk+1 = xk + αkdk.
STEP 7: Compute F (xk+1).
STEP 8: Determine γk+1(using (9)).
STEP 9: Set k=k+1, and go to STEP 3.

3. CONVERGENCE RESULT

In this section, we present the global convergence of our method (EMD). To
begin with, let us defined the level set

Ω = {x|‖F (x)‖ ≤ ‖F (x0)‖}. (13)
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In order to analyze the convergence of algorithm 1, we need the following assump-
tion:
Assumption 1
(1) There exists x∗ ∈ Rn such that F (x∗) = 0.
(2) F is continuously differentiable in some neighborhood, say N of x∗ containing
Ω.
(3) The Jacobian of F is bounded and positive definite on N, i.e., there exists a
positive constants M > m > 0 such that

‖F ′(x)‖ ≤M ∀x ∈ N, (14)

and

m‖d‖2 ≤ dTF ′(x)d ∀x ∈ N, d ∈ Rn. (15)

Remarks:
Assumption 1 implies that there exist constants M > m > 0 such that

m‖d‖ ≤ ‖F ′(x)d‖ ≤M‖d‖ ∀x ∈ N, d ∈ Rn. (16)

m‖x− y‖ ≤ ‖F (x)− F (y)‖ ≤M‖x− y‖ ∀x, y ∈ N. (17)

In particular ∀x ∈ N we have

m‖x− x∗‖ ≤ ‖F (x)‖ ≤ ‖F (x)− F (x∗)‖ ≤M‖x− x∗‖,

where x∗ stands for the unique solution of (1) in N. Since γkI approximates F ′(xk)
along direction sk, we can state another assumption.
Assumption 2
γkI is a good approximation to F ′(xk), i.e

‖(F ′(xk)− γkI)dk‖ ≤ ε‖F (xk)‖. (18)

where ε ∈ (0, 1) is a small quantity [18].
Lemma 3.1. Suppose that assumption 2 holds and {xk} be generated by algo-
rithm 1. Then, dk is a descent direction for f(xk) at xk i.e,

Of(xk)T dk < 0. (19)

proof. From (6), we have

Of(xk)T dk = F (xk)TF ′(xk)dk,

= F (xk)T [(F ′(xk)− γkI)dk − (1 + αk)F (xk)],

= F (xk)T (F ′(xk)− γkI)dk − (1 + αk)‖F (xk)‖2,
(20)
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by Chauchy-Schwarz we have,

Of(xk)T dk ≤ ‖F (xk)‖‖(F ′(xk)− γkI)dk‖ − (1 + αk)‖F (xk)‖2,
≤ −(1− ε)‖F (xk)‖2 − ‖

√
αkF (xk)‖2,

≤ −(1− ε)‖F (xk)‖2.
(21)

Hence for ε ∈ (0, 1) this lemma is true.
By the above lemma, we can deduce that the norm function f(xk) is a descent
along dk which means that ‖F (xk+1)‖ ≤ ‖F (xk)‖ is true.
Lemma 3.2. Suppose that assumption 2 holds and {xk} be generated by algo-
rithm 1. Then {xk} ⊂ Ω.
Proof. By lemma 3.1, we have ‖F (xk+1)‖ ≤ ‖F (xk)‖. Moreover, we have for all k

‖F (xk+1)‖ ≤ ‖F (xk)‖ ≤ ‖F (xk−1)‖ ≤ . . . ≤ ‖F (x0)‖.

This implies that {xk} ⊂ Ω.
Lemma 3.3. Suppose that assumption 1 holds and {xk} is generated by algorithm
1. Then there exists a constant m > 0 such that for all k

yTk sk ≥ m‖sk‖2. (22)

Proof. By mean-value theorem, we have, yTk sk = sTk (F (xk+1)−F (xk)) = sTk F
′(ξ)sk ≥

m‖sk‖2.
Where ξ = xk + ζ(xk+1 − xk) , ζ ∈ (0, 1); the last inequality follows from (15).
The proof is completed.
Using yTk sk ≥ m‖sk‖2 > 0, γk+1 is always generated by the update of formula (9),
and we can deduce that γk+1I inherits the positive definiteness of γkI. By the
above lemma and (17), we obtained

yTk sk
‖sk‖

≥ m, ‖yk‖2

yTk sk
≤ M2

m
. (23)

Lemma 3.4. Suppose that assumption 2 holds and {xk} is generated by algorithm
1. Then we have

lim
k→∞

‖αkdk‖ = lim
k→∞

‖sk‖ = 0, (24)

and

lim
k→∞

‖αkF (xk)‖ = 0. (25)

Proof. By (12) we have for all k > 0

ω2‖αkdk‖2 ≤ ω1‖αkF (xk)‖2 + ω2‖αkdk‖2,
≤ ‖F (xk)‖2 − ‖F (xk+1)‖2 + ηk‖F (xk)‖2,

(26)
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by summing the above inequality, we have

ω2

k∑
i=0

‖αidi‖2 ≤
k∑

i=0

(
‖F (xi)‖2 − ‖F (xi+1)‖2

)
+

k∑
i=0

ηi‖F (xi)‖2,

= ‖F (x0)‖2 − ‖F (xk+1)‖2 +

k∑
i=0

ηi‖F (xi)‖2,

≤ ‖F (x0)‖2 + ‖F (x0)‖2
k∑

i=0

ηi,

≤ ‖F (x0)‖2 + ‖F (x0)‖2
∞∑
i=0

ηi.

(27)

So from the level set and fact that {ηk} satisfies (11) then the series

∞∑
i=0

‖αidi‖2

converged. This implies (24). By similar arguments as the above but with
ω1‖αkF (xk)‖2 on the left hand side, we obtain (25).
Lemma 3.5. Suppose that assumption 2 holds and {xk} is generated by algorithm
1. Then there exist a constant m3 > 0 such that for all k > 0,

‖dk‖ ≤ m3. (28)

Proof. From (8) and (17) we have

‖dk‖ =

∥∥∥∥− (1 + αk)F (xk)yTk sk
‖yk‖2

∥∥∥∥ ,
≤ (1 + αk)‖F (xk)‖‖sk‖‖yk‖

m2‖sk‖2
,

≤ (1 + αk)‖F (xk)‖M‖sk‖
m2‖sk‖

,

≤ (1 + αk)‖F (xk)‖M
m2

,

=
‖F (xk)‖M + ‖αkF (xk)‖M

m2
,

≤ (‖F (x0)‖+ P )M

m2
,

(29)

where P is some positive constant. Taking m3 = (‖F (x0)‖+P )M
m2 , we have (28). We

can deduce that for all k, (28) holds.
Now we are going to establish a global convergence theorem to show that

under some suitable conditions, there exist an accumulation point of {xk} which
is a solution to problem (1).
Theorem 3.1. Suppose that assumption 2 holds,{xk} is generated by algorithm
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1. Assume further for all k > 0,

αk ≥ c
|F (xk)dk|
‖dk‖2

, (30)

where c is some positive constant. Then

lim
k→∞

‖F (xk)‖ = 0. (31)

Proof. From lemma 3.5 we have (28). Therefore by (24) and the boundedness of
{‖dk‖}, we have

lim
k→∞

αk‖dk‖2 = 0. (32)

From (30) and (32) it follows that

lim
k→∞

|F (xk)T dk| = 0. (33)

On the other hand, (8) leads to,

−γkF (xk)T dk = (1 + αk)‖F (xk)‖2,
= ‖F (xk)‖2 + ‖αkF (xk)‖2,

(34)

and

‖F (xk)‖2 = ‖ − γkF (xk)T dk‖ − ‖αkF (xk)‖2

≤ |γk||F (xk)T dk|,
(35)

but

γ−1k =
yTk−1sk−1

‖yk−1‖2
≥ m‖sk−1‖2

‖yk−1‖2
≥ m‖sk−1‖2

M2‖sk−1‖2
=

m

M2
.

Then
|γ−1k | ≥

m

M2
,

so from (35),

‖F (xk)‖2 ≤ |F (xk)T dk|
(
M2

m

)
. (36)

Thus

0 ≤ ‖F (xk)‖2 ≤ |F (xk)T dk|
(
M2

m

)
−→ 0. (37)

Therefore

lim
k→∞

‖F (xk)‖ = 0. (38)

The proof is completed.
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4. NUMERICAL RESULTS

In this section, the performance of the proposed method is compared with
a derivative-free CG method and its global convergence for solving symmetric
nonlinear equations [10]. For both methods the following parameters are set,

ω1 = ω2 = 10−4, α0 = 0.01, r = 0.2 and ηk =
1

(k + 1)2
.

The employed computational codes ware written in Matlab 7.9.0 (R2009b) and run
on a personal computer 2.00 GHz CPU processor and 3 GB RAM memory. We
stop the iteration if the total number of iterations exceeds 1000 or ‖F (xk)‖ ≤ 10−4.
We claim that the method fails, and use the symbol ”-” to represent failure due to:
(i) Memory requirement, (ii) Number of iterations exceed 1000, (iii) If ‖F (xk)‖ is
not a number. The methods were tested on some Benchmark test problems with
different initial points. Problems 1-7 below are from [10] and problems 9 and 10
are from [27], while problem 8 is an artificial problem.
Problem 1:

F (x) =



2 −1
−1 2 −1

. . .
. . .

. . .

. . .
. . . −1
−1 2

x+ (ex1 − 1, ..., exn − 1)T . (39)

Problem 2:

F (x) =



2 −1
0 2 −1

. . .
. . .

. . .

. . .
. . . −1
−1 2

x+ (sinx1 − 1, ..., sinxn − 1)T . (40)

Problem 3:

F1(x) = x1(x21 + x22)− 1,

Fi(x) = xi(x
2
i−1 + 2x2i + x2i+1),

Fn(x) = xn(x2n−1 + x2n).

i = 2, 3, ..., n− 1.

(41)
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Problem 4:

F3i−2(x) = x3i − 2x3i−1 − x23i − 1,

F3i−1(x) = x3i−2x3i−2x3i − x23i−2 + x23i−1 − 2,

F3i(x) = e−x3i−2 − e−x3i−1 .

i = 1, ...,
n

3
.

(42)

Problem 5:

Fi(x) = (1− x2i ) + xi(1 + xixn−2xn−1xn)− 2.

i = 1, 2, ..., n.
(43)

Problem 6:

F1(x) = x21 − 3x1 + 1 + cos(x1 − x2),

Fi(x) = x21 − 3xi + 1 + cos(xi − xi−1).

i = 1, 2, ..., n.

(44)

Problem 7:

Fi(x) = xi − 0.1x2i+1,

Fn(x) = xn − 0.1x21.

i = 1, 2, ..., n− 1.

(45)

Problem 8:

Fi(x) = 0.i(1− xi)2 − e−x
2
i ,

Fn(x) =
n

10
(1− e−x

2
n).

i = 1, 2, ..., n− 1.

(46)

Problem 9. The discretized Chandrasehars H-equation:

Fi(x) = xi −

1− c

2n

n∑
j=1

µixj
µi + µj

−1
i = 1, 2, ..., n, j = 1, 2, ..., n.

(47)

with c ∈ [0, 1) and µ = i−0.5
n , for 1 ≤ i ≤ n. (In our experiment we take c =0.1).

Problem 10.

Fi(x) = 2

n+ i(1− cosxi)− sinxi −
n∑

j=1

cosxj

 (2sinxi − cosxi)

i = 1, 2, ..., n.

(48)
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Table 1: Test results for the two methods, where e=Ones(n,1)
EMD DFCG

Problems x0 n Iter Time(s) ‖F (xk)‖ Iter Time(s) ‖F (xk)‖
1 0.5*e 10 17 0.046537 6.53E-05 33 0.137884 9.74E-05

100 20 0.097375 8.55E-05 38 0.182246 9.55E-05
1000 19 0.529183 7.73E-05 53 2.285821 8.72E-05
2000 24 2.108369 8.97E-05 54 7.791001 8.10E-05

2 e 10 14 0.052196 7.09E-05 49 0.18529 4.08E-05
100 15 0.050377 9.85E-05 60 0.291577 8.65E-05
1000 17 0.492775 3.77E-05 63 2.874518 9.31E-05
2000 17 1.575679 4.12E-05 61 9.321487 9.30E-05

3 0.01*e 10 18 0.005688 5.46E-05 52 0.021726 9.57E-05
100 25 0.010826 9.24E-05 52 0.021726 9.57E-05
1000 24 0.037681 6.58E-05 54 0.105493 8.83E-05
2000 27 0.076132 9.43E-05 54 0.176152 8.43E-05
3000 26 0.088922 8.47E-05 62 0.237935 9.52E-05
50000 26 1.229412 5.90E-05 55 3.550896 7.53E-05

4 0.1*e 10 15 0.029809 5.75E-05 47 0.018898 8.07E-05
100 17 0.012018 2.88E-05 66 0.034618 9.72E-05
1000 17 0.016923 9.14E-05 60 0.072484 8.25E-05
5000 19 0.086431 7.42E-05 57 0.308569 9.39E-05
10000 20 0.163747 5.69E-05 58 0.637811 6.51E-05

5 0.7*e 10 15 0.004618 3.52E-05 431 0.176174 9.54E-07
100 16 0.008113 6.67E-05 431 0.31315 3.02E-06
1000 17 0.027731 4.22E-05 431 0.996263 9.54E-06
5000 17 0.086502 9.44E-05 431 4.354077 2.13E-05
10000 18 0.148485 8.01E-05 431 8.684382 3.02E-05

6 0.4*e 10 14 0.027285 7.76E-05 - - -
100 15 0.002827 4.91E-05 - - -
1000 16 0.0171 9.31E-05 - - -
5000 17 0.071727 4.16E-05 - - -
10000 17 0.125057 5.89E-05 - - -

7 e 10 10 0.00801 5.51E-05 5 0.036751 5.23E-06
100 12 0.016974 2.18E-05 5 0.017619 2.35E-05
1000 12 0.349293 6.91E-05 5 0.206744 7.52E-05
5000 13 2.454612 9.27E-05 6 1.910818 3.28E-08
10000 14 6.537241 2.62E-05 6 5.167084 4.64E-08

8 0.5*e 10 4 0.069137 7.61E-05 14 0.005212 5.80E-05
100 4 0.001451 5.12E-05 13 0.008095 6.11E-05
1000 9 0.008449 6.57E-05 27 0.057786 6.03E-05
5000 10 0.046607 3.54E-05 23 0.138946 6.18E-05
10000 7 0.072395 2.36E-05 36 0.466298 1.29E-06

9 -10*e 10 16 0.026132 3.67E-05 39 0.033934 9.61E-05
100 16 0.014753 6.26E-05 48 0.056708 6.08E-05
1000 18 0.027309 5.27E-05 63 0.115058 6.53E-05
5000 16 0.084268 3.11E-05 69 0.442739 9.04E-05
10000 22 0.166954 7.40E-05 - - -

10 -20*e 10 12 0.015719 7.57E-05 33 0.025701 5.81E-06
100 14 0.013666 2.81E-05 - - -
1000 14 0.063125 7.38E-06 - - -
5000 19 0.582888 8.56E-05 - - -
10000 18 0.997046 2.73E-05 - - -
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Figure 1: Performance profile with respect to the number of iterations
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Figure 2: Performance profile with respect to the CPU time (in second)

The numerical results of the two methods are reported in Table 1, where ”Iter”
and ”Time” stand for the total number of all iterations and the CPU time in
seconds, respectively, while ‖F (xk)‖ is the norm of the residual at the stopping
point. From Table 1, we can easily observe that both methods attempt to solve
the systems of nonlinear equations (1), but the better efficiency and effectiveness
of our algorithm is clear for it solves where DFCG fails. This is quite evident for
instance with problems 6, 9 and 10. In particular, the EMD method considerably
outperforms the DFCG for almost all the tested problems, as it has the smallest
number of iterations and shorter CPU time, which is even smaller than the CPU
time for the DFCG method.

Figures (1-2) show the performance of our method relative to the number of
iterations and CPU time, which were evaluated using the profiles of Dolan and
Moré [4]. That is, for each method, we plot the fraction P (τ) of the problems
for which the method is within a factor τ of the best time. The top curve is the
method that solved the most problems in a time within a factor τ of the best time.
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5. CONCLUSION

In this paper, an efficient matrix-free direction method with line search for
solving large scale systems of nonlinear equations is derived. It is a fully matrix-
free iterative method which possesses global convergence under some reasonable
conditions. Numerical comparisons using a set of large-scale test problems show
that the proposed method is practically quite effective.
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