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1. INTRODUCTION

The mathematical programming problems with equilibrium constraints could
be served in reformulating many problems from economic equilibria, multilevel
games [18], industrial engineering [2], healthcare management [16]. Among many
other interesting research, optimality conditions and duality for mathematical pro-
gramming problems with equilibrium constraints have been considered numerously
by many researchers (see, e.g., [3, 6, 9, 11, 15, 22, 24, 26] and the references
therein). On the other hand, a simultaneous minimization of a finite number of
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objective functions over an infinite number of constraints is called a multiobjective
semi-infinite programming problem. Due to semi-infinite programming problems
having application in many fields [7], they have attracted a lot of attention from
many authors (see, e.g., [4, 5, 8, 12, 13, 14, 27, 28, 29, 30, 31, 32] and the ref-
erences therein). Recently, semi-infinite programming problems with equilibrium
constraints have been presented and investigated. In [21], strong Karush-Kuhn-
Tucker (KKT) type sufficient optimality conditions for nonsmooth multiobjective
semi-infinite mathematical programming problems with equilibrium constraints
were established via Clarke subdifferentials. By using convexificators, the paper
[20] established necessary and sufficient optimality conditions and derived weak
and strong duality theorems relating to the semi-infinite mathematical program-
ming problems with equilibrium constraints. The Lagrange type dual model and
saddle point optimality criteria of semi-infinite mathematical programming prob-
lems with equilibrium constraints were discussed in [25]. However, KKT necessary
optimality conditions for multiobjective semi-infinite programming problems with
equilibrium constraints have not yet been considered in [21]. Moreover, to the
best of our knowledge, there is no paper dealing with duality for multiobjective
semi-infinite programming problems with equilibrium constraints.

Inspired by the above observations, we concentrate on studying Karush-Kuhn-
Tucker optimality conditions and duality results for the multiobjective semi-infinite
programming with equilibrium constraints. The organization of this paper is as fol-
lows. In Section 2, some basic concepts and preliminaries are recollected. Section
3 is a discussion of the KKT necessary and sufficient optimality conditions for the
multiobjective semi-infinite programming problems with equilibrium constraints.
Then, we explore Mond-Weir and Wolfe dual problems of the multiobjective semi-
infinite programming problems with equilibrium constraints in Section 4. Some
examples are given to illuminate the results of the paper.

2. PRELIMINARIES

The following notations and definitions will be used throughout the paper. Let
Rn be a finite-dimensional Euclidean space. The notation 〈·, ·〉 is used to denote
the inner product. By B(x, δ) we indicate the open ball centered at x with radius
δ > 0. For a given x̄, U(x̄) is the system of the neighborhoods of x̄. For A ⊆ Rn,
intA, clA, affA, spanA and coA stand for its interior, closure, affine hull, linear hull,
convex hull of A, respectively (resp). The cone and the convex cone (containing
the origin) generated by A are denoted resp by coneA, posA. It should be noted
that, for the given sets A1, A2 in Rn,

span(A1 ∪A2) = spanA1 + spanA2 and pos(A1 ∪A2) = posA1 + posA2.

The negative polar cone, the strictly negative polar cone and the orthogonal com-
plement of A are defined resp by

A− := {x∗ ∈ Rn|〈x∗, x〉 ≤ 0, ∀x ∈ A},
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As := {x∗ ∈ Rn|〈x∗, x〉 < 0, ∀x ∈ A \ {0}},
A⊥ := {x∗ ∈ Rn|〈x∗, x〉 = 0, ∀x ∈ A}.

It is easy to check that As ⊂ A− and if As 6= ∅ then clAs = A−. Moreover, the
bipolar theorem, see e.g. [1], states that A−− = cl posA. For a given nonempty
subset A of Rn, the contingent cone [1] of A at x̄ ∈ clA is

T (A, x̄) := {x ∈ Rn | ∃τk ↓ 0,∃xk → x, ∀k ∈ N, x̄+ τkxk ∈ A}.

Note that if A is a convex set then T (A, x̄) = clcone(A − x̄). If 〈x∗, x〉 ≥ 0 for
all x∗ ∈ A∗, where A∗ is a subset of the dual space of Rn, we write 〈A∗, x〉 ≥ 0.
The notion o(τk), for τ > 0 and k ∈ N, designates a moving point such that
o(τk)/τk → 0 as τ → 0+. The cardinality of the index set I is denoted by |I|. For
an index subset I ⊂ {1, ..., n}, xI = 0(xI ≥ 0) stands for xi = 0 (xi ≥ 0, resp) for
all i ∈ I.

In the line of [21], we consider the following multiobjective semi-infinite pro-
gramming with equilibrium constraints (P):

Rm
+ −min f(x) = (f1(x), ..., fm(x))

s.t. gt(x) ≤ 0, t ∈ T ,
hi(x) = 0, i = 1, ..., q,
Gi(x) ≥ 0, i = 1, ..., l,
Hi(x) ≥ 0, i = 1, ..., l,
Gi(x)Hi(x) = 0, i = 1, ..., l,

where fi(i = 1, ...,m), gt(t ∈ T ), hi(i = 1, ..., q) and Gi, Hi(i = 1, ..., l) are con-
tinuously differentiable functions from Rn to R. The index set T is an arbitrary
nonempty set, not necessary finite. Let us denote I := {1, ...,m}, Ih := {1, ..., q}
and Il := {1, ..., l}. The feasible solution set of (P) is

Ω := {x ∈ Rn | gt(x) ≤ 0(t ∈ T ), hi(x) = 0(i ∈ Ih),

Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0(i ∈ Il)}.
Recall some types of efficient solutions, see e.g. [17], of the multiobjective semi-
infinite programming as follows.

Definition 1. Let x̄ ∈ Ω.

(i) x̄ is a locally (Pareto) efficient solution of (P), denoted by x̄ ∈ locE(P), if
there exists a neighborhood U ∈ U(x̄) such that

f(x)− f(x̄) 6∈ −Rm
+ \ {0},∀x ∈ Ω ∩ U.

(ii) x̄ is a locally weakly efficient solution of (P), denoted by x̄ ∈ locWE(P), if
there exists a neighborhood U ∈ U(x̄) such that

f(x)− f(x̄) 6∈ −intRm
+ ,∀x ∈ Ω ∩ U..

If U = Rn, the word “locally” is omitted. In this case, the efficient solution sets/the
weakly efficient solution sets are denoted by E(P )/WE(P ). It is straightforward
that E(P ) ⊂WE(P ).
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The notation R|T |+ represents the collection of all the functions λ : T → R taking
values λt’s positive only at finitely many points of T , and equal to zero at the
other points. For a given x̄ ∈ Ω, we signify by Ig(x̄) := {t ∈ T |gt(x̄) = 0} the
index set of all active constraints at x̄. The set of active constraint multipliers at
x̄ ∈ Ω is

Λ(x̄) := {λ ∈ R|T |+ |λtgt(x̄) = 0,∀t ∈ T}.

Notice that λ ∈ Λ(x̄) if there exists a finite index set J ⊂ Ig(x̄) such that λt > 0
for all t ∈ J and λt = 0 for all t ∈ T \ J . For each x̄ ∈ Ω, let us define

I+0(x̄) := {i ∈ Il | Gi(x̄) > 0, Hi(x̄) = 0},

I00(x̄) := {i ∈ Il | Gi(x̄) = 0, Hi(x̄) = 0},

I0+(x̄) := {i ∈ Il | Gi(x̄) = 0, Hi(x̄) > 0}.

Definition 2. The point x̄ ∈ Ω is called a strong stationary point of (P) iff there
exists (α, λg, λh, λG, λH) ∈ Rm

+ ×Λ(x̄)×Rq×Rl×Rl with λGI+0(x̄) = 0, λGI00(x̄) ≥ 0,

λHI00(x̄) ≥ 0 and λHI0+(x̄) = 0 such that∑
i∈I

αi∇fi(x̄)+
∑
t∈T

λgt∇gt(x̄)+
∑
i∈Ih

λhi∇hi(x̄)−
∑
i∈Il

λGi ∇Gi(x̄)−
∑
i∈Il

λHi ∇Hi(x̄) = 0.

For x̄ ∈ Ω and (λg, λh, λG, λH) ∈ R|T |+ × Rq × Rl × Rl, we define

I+
g (x̄) := {t ∈ Ig(x̄) | λgt > 0},

I+
h (x̄) := {i ∈ Ih | λhi > 0}, I−h (x̄) := {i ∈ Ih | λhi < 0},

I++
00 (x̄) := {i ∈ I00(x̄) | λGi > 0, λHi > 0},

I+
0+(x̄) := {i ∈ I0+(x̄) | λGi > 0}, I−0+(x̄) := {i ∈ I0+(x̄) | λGi < 0},

I+
00(x̄) := {i ∈ I00(x̄) | λGi > 0, λHi = 0}, I−00(x̄) := {i ∈ I00(x̄) | λGi < 0, λHi = 0},

Î+
+0(x̄) := {i ∈ I+0(x̄) | λHi > 0}, Î−+0(x̄) := {i ∈ I+0(x̄) | λHi < 0},

Î+
00(x̄) := {i ∈ I00(x̄) | λGi = 0, λHi > 0}, Î−00(x̄) := {i ∈ I00(x̄) | λGi = 0, λHi < 0}.

Definition 3. [23] Let X ⊂ Rn be an open convex set and ϕ : Rn → R be differ-
entiable at x̄ ∈ X.

(i) ϕ is convex at x̄ if ϕ(λx̄+(1−λ)x) ≤ λϕ(x̄)+(1−λ)ϕ(x),∀x ∈ X,∀λ ∈ [0, 1].

(ii) ϕ is strictly convex at x̄ if

ϕ(λx̄+ (1− λ)x) < λϕ(x̄) + (1− λ)ϕ(x),∀x ∈ X \ {x̄},∀λ ∈ (0, 1).

(iii) ϕ is quasiconvex at x̄ if ϕ(λx̄+ (1− λ)x) ≤ max{ϕ(x̄), ϕ(x)},∀x ∈ X,∀λ ∈
[0, 1].
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(iv) ϕ is pseudoconvex at x̄ if, for all x ∈ X,

ϕ(x) < ϕ(x̄)⇒ 〈∇ϕ(x̄), x− x̄〉 < 0.

(v) ϕ is strictly pseudoconvex at x̄ if, for all x ∈ X \ {x̄},

ϕ(x) ≤ ϕ(x̄)⇒ 〈∇ϕ(x̄), x− x̄〉 < 0.

(vi) ϕ is convex on X if ϕ is convex on each point of X. Other concepts here
introduced can be defined on a set in a similar way.

Remark 4. [23] Let X ⊂ Rn be an open convex set and ϕ : Rn → R be differen-
tiable at x̄ ∈ X.

(i) If ϕ is convex at x̄, then

〈∇ϕ(x̄), x− x̄〉 ≤ ϕ(x)− ϕ(x̄), for all x ∈ X.

(ii) If ϕ is quasiconvex at x̄, then, for all x ∈ X,

ϕ(x) ≤ ϕ(x̄)⇒ 〈∇ϕ(x̄), x− x̄〉 ≤ 0.

(iii) If ϕ is convex at x̄ then ϕ is pseudoconvex at x̄. If ϕ is pseudoconvex at x̄
then ϕ is quasiconvex at x̄.

Lemma 5. [23] Let {Ct|t ∈ Γ} be an arbitrary collection of nonempty convex sets

in Rn and K = pos

( ⋃
t∈Γ

Ct

)
. Then, every nonzero vector of K can be expressed

as a non-negative linear combination of n or fewer linear independent vectors, each
belonging to a different Ct.

Lemma 6. [7] Suppose that S, T, P are arbitrary (possibly infinite) index sets,
as = a(s) = (a1(s), ..., an(s)) maps S onto Rn, and so do at and ap. Suppose
that the set co{as, s ∈ S} + pos{at, t ∈ T} + span{ap, p ∈ P} is closed. Then the
following statements are equivalent:

I :

 〈as, x〉 < 0, s ∈ S, S 6= ∅
〈at, x〉 ≤ 0, t ∈ T
〈ap, x〉 = 0, p ∈ P

has no solution x ∈ Rn;

II : 0 ∈ co{as, s ∈ S}+ pos{at, t ∈ T}+ span{ap, p ∈ P}.

Lemma 7. [10] If A is a nonempty compact subset of Rn, then,

(i) coA is a compact set;

(ii) if 0 6∈ coA, then posA is a closed cone.
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3. KARUSH-KUHN-TUCKER OPTIMALITY CONDITIONS

In this section, we write the index set Ig instead of Ig(x̄) for the sake of con-
venience. The other index sets are expressed similarly.

Definition 8. The linearized cone of (P) at x̄ ∈ Ω is

L(x̄) := {d ∈ Rn | 〈∇gt(x̄), d〉 ≤ 0(t ∈ Ig), 〈∇hi(x̄),

d〉 = 0(i ∈ Ih), 〈∇Gi(x̄), d〉 = 0(i ∈ I0+),

〈∇Gi(x̄), d〉 ≥ 0(i ∈ I00), 〈∇Hi(x̄), d〉 ≥ 0(i ∈ I00), 〈∇Hi(x̄), d〉 = 0(i ∈ I+0)}.

By the proof similar to the proof of Lemma 4 in [6], we can prove that L(x̄) is the
linearized cone of (P) in the sense of nonlinear programming.

Remark 9. We can check that

L(x̄) = (
⋃
t∈Ig

∇gt(x̄))− ∩ (
⋃
i∈Ih

∇hi(x̄))⊥ ∩ (
⋃

i∈I0+

∇Gi(x̄))⊥

∩(
⋃

i∈I00

(−∇Gi(x̄))− ∩ (
⋃

i∈I00

(−∇Hi(x̄))− ∩ (
⋃

i∈I+0

∇Hi(x̄))⊥.

Now, we establish the KKT necessary optimality condition for locally weakly effi-
cient solutions of (P) under the following constraint qualification:

(ACQ) : L(x̄) ⊆ T (Ω, x̄).

Proposition 10. Let x̄ ∈ locWE(P). If (ACQ) holds at x̄ and the set

∆ := pos

⋃
t∈Ig

∇gt(x̄) ∪
⋃

i∈I00

(−∇Gi(x̄)) ∪ −∇Hi(x̄))



+span

⋃
i∈Ih

∇hi(x̄) ∪
⋃

i∈I0+

∇Gi(x̄) ∪
⋃

i∈I+0

∇Hi(x̄)


is closed, then x̄ is a strong stationary point of (P).

Proof. Since x̄ ∈ locWE(P), there exists U ∈ U(x̄) such that there is no x ∈ Ω∩U
satisfying

fi(x) < fi(x̄),∀i ∈ I. (1)

First, we justify that(⋃
i∈I
∇fi(x̄)

)s

∩ T (Ω, x̄) = ∅. (2)
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On the contrary, assume that there exists d ∈
(⋃

i∈I
∇fi(x̄)

)s

∩ T (Ω, x̄). Then, it

is straightforward that
〈∇fi(x̄), d〉 < 0,∀i ∈ I.

By d ∈ T (Ω, x̄), there exist τk ↓ 0 and dk → d such that x̄ + τkdk ∈ Ω for all k.
As fi(i ∈ I) is continuously differentiable at x̄, one has

fi(x̄+ τkdk) = fi(x̄) + τk〈∇fi(x̄), dk〉+ o(τk‖dk‖),∀i ∈ I.

In consequence, for all i ∈ I,

fi(x̄+ τkdk)− fi(x̄)

τk
= 〈∇fi(x̄), dk〉+

o(τk‖dk‖)
τk‖dk‖

.‖dk‖ → 〈∇fi(x̄), d〉 < 0, when k →∞.

Hence, for each i ∈ I, there exists k̄i > 0 such that
fi(x̄+ τkdk)− fi(x̄)

τk
< 0, for

all k > k̄i. Setting k̄ := max{k̄i | i ∈ I}, we guarantee the existence of k > k̄ large
enough such that x̄+ τkdk ∈ Ω ∩ U and

fi(x̄+ τkdk) < fi(x̄), ∀i ∈ I,

which contradicts (1). Therefore, the fulfillment of (2) follows. We get from (2)
and (ACQ) that

(
⋃
i∈I
∇fi(x̄))s ∩ (

⋃
t∈Ig

∇gt(x̄))− ∩ (
⋃
i∈Ih

∇hi(x̄))⊥ ∩ (
⋃

i∈I0+

∇Gi(x̄))⊥

∩(
⋃

i∈I00

(−∇Gi(x̄))− ∩ (
⋃

i∈I00

(−∇Hi(x̄))− ∩ (
⋃

i∈I+0

∇Hi(x̄))⊥ = ∅.

This implies that there is no d ∈ Rn such that

〈∇fi(x̄), d〉 < 0, ∀i ∈ I,
〈∇gt(x̄), d〉 ≤ 0, ∀t ∈ Ig,
〈∇hi(x̄), d〉 = 0, ∀i ∈ Ih,
〈∇Gi(x̄), d〉 = 0, ∀i ∈ I0+,
〈−∇Gi(x̄), d〉 ≤ 0, ∀i ∈ I00,
〈−∇Hi(x̄), d〉 ≤ 0, ∀i ∈ I00,
〈∇Hi(x̄), d〉 = 0, ∀i ∈ I+0.

In addition, it follows from Lemma 7 that co{
⋃
i∈I
∇fi(x̄)} is a compact set, which

in turn implies co{
⋃
i∈I
∇fi(x̄)}+ ∆ is closed. According to Lemma 6, one has

0 ∈ co
⋃
i∈I
∇fi(x̄) + pos

⋃
t∈Ig

∇gt(x̄) ∪
⋃

i∈I00

(−∇Gi(x̄)) ∪ −∇Hi(x̄))


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+span

⋃
i∈Ih

∇hi(x̄) ∪
⋃

i∈I0+

∇Gi(x̄) ∪
⋃

i∈I+0

∇Hi(x̄)

 .

This leads that

0 ∈ co
⋃
i∈I
∇f(x̄) + pos

⋃
t∈Ig

∇gt(x̄) + span
⋃
i∈Ih

∇hi(x̄) + pos
⋃

i∈I00

(−∇Gi(x̄))

+span
⋃

i∈I0+

∇Gi(x̄) + pos
⋃

i∈I00

(−∇Hi(x̄)) + span
⋃

i∈I+0

∇Hi(x̄).

By Lemma 5, we know that there exists (α, λg, λh, λG, λH) ∈ Rm
+ × Λ(x̄) × Rq ×

Rl × Rl with λGI+0
= 0, λGI00 ≥ 0, λHI00 ≥ 0 and λHI0+ = 0 such that∑

i∈I
αi∇fi(x̄)+

∑
t∈T

λgt∇gt(x̄)+
∑
i∈Ih

λhi∇hi(x̄)−
∑
i∈Il

λGi ∇Gi(x̄)−
∑
i∈Il

λHi ∇Hi(x̄) = 0.

So, x̄ is a strong-stationary point of (P).

Proposition 11. Let x̄ ∈ Ω be a strong stationary point of (P). Suppose that
I−0+ ∪ Î

−
+0 = ∅ and gt(t ∈ Ig), hi(i ∈ I+

h ),−hi(i ∈ I−h ),−Gi(i ∈ I+
0+ ∪ I

+
00 ∪

I++
00 ),−Hi(i ∈ Î+

00 ∪ Î
+
+0 ∪ I

++
00 ) are quasiconvex at x̄.

(i) If fi(i ∈ I) is pseudoconvex at x̄, then x̄ is a weakly efficient solution of (P).

(ii) If fi(i ∈ I) is strictly pseudoconvex at x̄, then x̄ is an efficient solution of
(P).

Proof. Since x̄ is a strong stationary point of (P), there exists (α, λgJ , λ
h, λG, λH) ∈

Rm
+ ×R

|J|
+ ×Rq ×Rl×Rl, where J is a finite subset of Ig, with λGI+0

= 0, λGI00 ≥ 0,

λHI00 ≥ 0 and λHI0+ = 0 such that∑
i∈I

αi∇fi(x̄)+
∑
t∈J

λgt∇gt(x̄)+
∑
i∈Ih

λhi∇hi(x̄)−
∑

i∈I0+∪I00
λGi ∇Gi(x̄)−

∑
i∈I00∪I+0

λHi ∇Hi(x̄) = 0.

(3)

For an arbitrary x ∈ Ω, one gets that gt(x) ≤ 0 = gt(x̄) for each t ∈ Ig. Therefore,
by the quasiconvexity at x̄ of gt(t ∈ Ig), we have

〈∇gt(x̄), x− x̄〉 ≤ 0,∀t ∈ J,

which in turn together with λgJ ∈ R
|J|
+ derives that〈∑

t∈J
λgt∇gt(x̄), x− x̄

〉
≤ 0. (4)

We deduce from x, x̄ ∈ Ω that hi(x) = hi(x̄) = 0,∀i ∈ Ih, and hence,

hi(x) ≤ hi(x̄),∀i ∈ I+
h and − hi(x) ≤ −h(x̄),∀i ∈ I−h .
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The above inequalities together with the quasiconvexity at x̄ of hi(i ∈ I+
h ) and

−hi(i ∈ I−h ) ensures that

〈∇hi(x̄), x− x̄〉 ≤ 0,∀i ∈ I+
h and 〈−∇hi(x̄), x− x̄〉 ≤ 0,∀i ∈ I−h .

This, taking into account the definitions of I+
h , I

−
h , gives us〈∑

i∈Ih

λhi∇hi(x̄), x− x̄

〉
≤ 0. (5)

Again, we derive from x ∈ Ω that −Gi(x) ≤ 0,∀i ∈ Il, and thus, −Gi(x) ≤
−Gi(x̄)(i ∈ I+

0+ ∪ I
+
00 ∪ I

++
00 ). Therefore, by the quasiconvexity of −Gi(i ∈ I+

0+ ∪
I+
00 ∪ I

++
00 ) at x̄, one yields that

〈−∇Gi(x̄), x− x̄〉 ≤ 0,∀i ∈ I+
0+ ∪ I

+
00 ∪ I

++
00 ,

which, along with the definitions of I+
0+ ∪ I

+
00 ∪ I

++
00 , leads that

−

〈 ∑
i∈I+

0+∪I
+
00∪I

++
00

λGi ∇Gi(x̄), x− x̄

〉
≤ 0 (6)

Similarly, we can justify that

−

〈 ∑
i∈Î+

00∪Î
+
+0∪I

++
00

λHi ∇Hi(x̄), x− x̄

〉
≤ 0. (7)

As I−0+ ∪ Î
−
+0 = ∅, we infer from (3) - (7) that〈∑

i∈I
αi∇fi(x̄), x− x̄

〉

= −

〈∑
t∈T

λgt∇gt(x̄) +
∑
i∈Ih

λhi∇hi(x̄)−
∑
i∈Il

λGi ∇Gi(x̄)−
∑
i∈Il

λHi ∇Hi(x̄), x− x̄

〉
≥ 0,

(8)

for all x ∈ Ω.
(i) Suppose, to the contrary, that x̄ is not a weakly efficient solution of (P). This
leads to the existence of a feasible point x̃ ∈ Ω satisfying

fi(x̃) < fi(x̄),∀i ∈ I.

The fact on fi(x̃) < fi(x̄) for each i and the pseudoconvexity of fi(i ∈ I) give us
the inclusions

〈∇fi(x̄), x̃− x̄〉 < 0, i ∈ I.
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Combining this with α ∈ Rm
+ and

∑m
i=1 αi = 1, we arrive at〈∑

i∈I
αi∇fi(x̄), x̃− x̄

〉
< 0,

contradicting with (8).
(ii) Reasoning by contraposition, assume that x̄ is not an efficient solution. Then
there exists a feasible point x̃ and at least i0 ∈ I fulfilling{

fi(x̃) ≤ fi(x̄), ∀i ∈ I \ {i0},
fi0(x̃) < fi0(x̄),

and hence, x̃ 6= x̄. It follows from the fact that fi(i ∈ I) are strictly pseudoconvex
and x 6= x̄, one has

〈∇fi, x̃− x̄〉 < 0, ∀i ∈ I.

Using this with α ∈ Rm
+ and

∑m
i=1 αi = 1 tells us that〈∑

i∈I
αi∇fi(x̄), x̃− x̄

〉
< 0,

which contradicts (8).

Example 12. Let m = 2, n = 2 and l = 1. Let us consider the following (P):
R2

+ −min f(x) = (f1(x), f2(x)) = (x2
1 + x2

2 + 2x1, x
2
1 + 2x2

2),
s.t. gt(x) = tx1 ≤ 0, t ∈ T = N = {1, 2, ...},

G1(x) = x1 ≥ 0,
H1(x) = x1 + x2 ≥ 0,
G1(x)H1(x) = x1(x1 + x2) = 0.

Then, Ω = {x ∈ R2 | x1 = 0, x2 ≥ 0}. For x̄ = (0, 0) ∈ Ω, direct calculations give
us that

T (Ω, x̄) = Ω,∇f1(x̄) = {(2, 0)},∇f2(x̄) = {(0, 0)}, Ig = T = N,

∇gt(x̄) = {(t, 0)}, t ∈ T, (
⋃
t∈Ig

∇gt(x̄))− = {x ∈ R2 | x1 ≤ 0},

I+0 = I0+ = ∅, I00 = {1},∇G1(x̄) = {(1, 0)},∇H1(x̄) = {(1, 1)},

(
⋃

i∈I00

(−∇Hi(x̄)))− = {x ∈ R2 | x1+x2 ≥ 0}, (
⋃

i∈I00

−∇Gi(x̄))− = {x ∈ R2 | x1 ≥ 0},

(
⋃
t∈Ig

∇gt(x̄))−∩(
⋃

i∈I00

(−∇Hi(x̄)))−∩(
⋃

i∈I00

∇Gi(x̄))− = {x ∈ R2 | x1 = 0, x2 ≥ 0}.

Hence,

(
⋃
t∈Ig

∇gt(x̄))− ∩ (
⋃

i∈I00

(−∇Gi(x̄)))− ∩ (
⋃

i∈I00

−∇Hi(x̄))− ⊂ T (Ω, x̄),
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leading that (ACQ) holds at x̄. Moreover,

∆ = pos

⋃
t∈Ig

∇gt(x̄) ∪
⋃

i∈I00

(−∇Gi(x̄)) ∪
⋃

i∈I00

(−∇Hi(x̄))

 = {x ∈ R2 | x2 ≤ 0}

is closed. Due to the fact f(x) − f(x̄) 6∈ −R2
+ \ {0},∀x ∈ Ω, we conclude that

x̄ ∈ WE(P ). Thus, all assumptions in Proposition 10 are fulfilled. Now, let
α1 = α2 = 1

2 , λ
G
1 = 2, λH1 = 0 and λg : T → R be defined by

λg(t) =

{
1, if t = 1,
0, otherwise.

Then,

1

2
(2, 0) +

1

2
(0, 0) +

∑
t∈T

λgt (t, 0)− λG1 (1, 0)− λH1 (1, 1) = (0, 0),

which means that x̄ is a strong stationary point of (P). Notice that, for the above
x̄ and (λg, λH1 , λ

G
1 ), one has

I++
00 = I−00 = Î+

00 = Î−00 = ∅, I+
00 = {1}.

Furthermore, we can check that gt(t ∈ Ig), −G1(1 ∈ I+
00) are convex at x̄ and

fi(i ∈ I) are strictly convex at x̄. Hence, all assumptions in Proposition 11 (ii)
are satisfied. Then, it follows Proposition 11 (ii) that x̄ is an efficient solution of
(P).

4. DUALITY

In this section, we consider the Wolfe [33] and Mond-Weir [19] duality schemes
for (P). For x̄ ∈ Ω, the index sets with respect to x̄ are denoted identically to
Section 3. In what follows, for u, v ∈ Rm, we use the notations:

u ≺ v ⇔ ui < vi for all i ∈ I, u ⊀ v is the negation of u ≺ v,

u � v ⇔
{
ui ≤ vi, for all i ∈ I,
ui < vi, for at least one i0 ∈ I,

u � v is the negation of u � v.

Note that x̄ ∈ locE(P ) (x̄ ∈ locWE(P )) if there exists U ∈ U(x̄) such that there
is no x ∈ Ω ∩ U satisfying f(x) � f(x̄) (f(x) ≺ f(x̄)).

4.1. The Wolfe type duality

For an arbitrary x̄ ∈ Ω, (u, α, λg, λh, λG, λH) ∈ Rn×Rm
+ ×R

|T |
+ ×Rq ×Rl×Rl

with
∑
i∈I

αi = 1, λGI+0(x̄) = 0, λGI00(x̄) ≥ 0, λHI00(x̄) ≥ 0 and λHI0+(x̄) = 0, we define

L(u, α, λg, λh, λG, λH) := f(u)
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+

(∑
t∈T

λtgt(u) +
∑
i∈Ih

λhi hi(u)−
∑
i∈Il

λGi Gi(u)−
∑
i∈Il

λHi Hi(u)

)
e,

where e := (1, ..., 1) ∈ Rm. In this paper, we consider the Wolfe type dual problem
as follows:
(DW (x̄)): Rm

+ −maxL(u, α, λg, λh, λG, λH)

s.t.
∑
i∈I

αi∇fi(u)+
∑
t∈T

λgt∇gt(u)+
∑
i∈Ih

λhi∇hi(u)−
∑
i∈Il

λGi ∇Gi(u)−
∑
i∈Il

λHi ∇Hi(u) = 0,

∑
i∈I

αi = 1, λGI+0(x̄) = 0, λGI00(x̄) ≥ 0, λHI00(x̄) ≥ 0, λHI0+(x̄) = 0,

(u, α, λg, λh, λG, λH) ∈ Rn × Rm
+ × R

|T |
+ × Rq × Rl × Rl.

The feasible set of (DW (x̄)) is defined by

ΩW (x̄) :=
{

(u, α, λg, λh, λG, λH) ∈ Rn × Rm
+ × R

|T |
+ × Rq × Rl × Rl |∑

i∈I
αi = 1, λGI+0(x̄) = 0, λGI00(x̄) ≥ 0, λHI00(x̄) ≥ 0, λHI0+(x̄) = 0,

∑
i∈I

αi∇fi(u) +
∑
t∈T

λgt∇gt(u) +
∑
i∈Ih

λhi∇hi(u)−
∑
i∈Il

λGi ∇Gi(u)−
∑
i∈Il

λHi ∇Hi(u) = 0

}
.

Definition 13. Let x̄ ∈ Ω.

(i) (ū, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ∈ ΩW (x̄) is a locally efficient solution of (DW (x̄)),
denoted by (ū, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ∈ locE(DW (x̄)), if there exists U ∈ N (ū)
such that there is no (u, α, λg, λh, λG, λH) ∈ ΩW (x̄) ∩ U satisfying

L(ū, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) � L(u, α, λg, λh, λG, λH).

(ii) (ū, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ∈ ΩW (x̄) is a locally weakly efficient solution of (DW (x̄)),
denoted by (ū, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ∈ locWE(DW (x̄)), if there exists U ∈ N (ū)
such that there is no (u, α, λg, λh, λG, λH) ∈ ΩW (x̄) ∩ U fulfilling

L(ū, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ≺ L(u, α, λg, λh, λG, λH).

If U = Rn, the word “locally” is omitted.

Remark 14. When m = 1 and f1, gt(t ∈ T ), hi(i = 1, ..., q) and Gi, Hi(i =
1, ..., l) are continuously differentiable functions, DW (x̄) becomes the Wolfe type
dual model WDSIMPEC(x̄) in [20].

The following proposition describes weak duality relations between (P) and the
dual problem (DW (x̄)).

Proposition 15. (weak duality) Let x ∈ Ω and (u, α, λg, λh, λG, λH) ∈ ΩW (x̄).
Suppose that I−0+(x̄) ∪ Î−+0(x̄) = ∅ and gt(t ∈ T ), hi(i ∈ I+

h (x̄)),−hi(i ∈ I−h (x̄)),

−Gi(i ∈ I+
0+(x̄)∪ I+

00(x̄)∪ I++
00 (x̄)), −Hi(i ∈ Î+

+0(x̄)∪ Î+
00(x̄)∪ I++

00 (x̄)) are convex
at u.
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(i) If fi(i ∈ I) are convex at u, then

f(x) 6≺ L(y, α, λg, λh, λG, λH).

(ii) If fi(i ∈ I) are strictly convex at u, then

f(x) 6� L(u, α, λg, λh, λG, λH).

Proof. For x ∈ Ω and (u, α, λg, λh, λG, λH) ∈ ΩW (x̄), one gets

gt(x) ≤ 0(t ∈ T ), hi(x) = 0(i ∈ Ih), Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0(i ∈ Il),
(9)

and∑
i∈I

αi∇fi(u)+
∑
t∈T

λgt∇gt(u)+
∑
i∈Ih

λhi∇hi(u)−
∑
i∈Il

λGi ∇Gi(u)−
∑
i∈Il

λHi ∇Hi(u) = 0

(10)

with ∑
i∈I

αi = 1, λGI+0(x̄) = 0, λGI00(x̄) ≥ 0, λHI00(x̄) ≥ 0, λHI0+(x̄) = 0. (11)

Therefore, we infer from (9), the convexity of gt(t ∈ T ), hi(i ∈ I+
h (x̄)), −hi(i ∈

I−h (x̄)), −Gi(i ∈ I+
0+(x) ∪ I+

00(x̄) ∪ I++
00 (x̄)), −Hi(i ∈ Î+

+0(x̄) ∪ Î+
00(x̄) ∪ I++

00 (x̄)) at
u and the definitions of the index sets that

gt(u) + 〈∇gt(u), x− u〉 ≤ gt(x) ≤ 0, λgt ≥ 0,∀t ∈ T,

hi(u) + 〈∇hi(u), x− u〉 ≤ hi(x) = 0, λhi > 0,∀i ∈ I+
h (x̄),

−hi(u) + 〈−∇hi(u), x− u〉 ≤ −hi(x) = 0, λhi < 0,∀i ∈ I−h (x̄),

−Gi(u) + 〈−∇Gi(u), x− u〉 ≤ −Gi(x) ≤ 0, λGi > 0,∀i ∈ I+
0+(x̄)∪ I+

00(x̄)∪ I++
00 (x̄),

−Hi(u) + 〈−∇Hi(u), x−u〉 ≤ −Hi(x) ≤ 0, λHi > 0,∀i ∈ Î+
+0(x̄)∪ Î+

00(x̄)∪ I++
00 (x̄).

The above inequalities together with I−0+(x̄) ∪ Î−+0(x̄) = ∅ imply that∑
t∈T

λtgt(u) +
∑
i∈Ih

λhi hi(u)−
∑
i∈Il

λGi Gi(u)−
∑
i∈Il

λHi Hi(u)

+

〈∑
t∈T

λgt∇gt(u) +
∑
i∈Ih

λhi∇hi(u)−
∑
i∈Il

λGi ∇Gi(u)−
∑
i∈Il

λHi ∇Hi(u), x− u

〉
≤ 0.

It follows from the above inequality and (10) that

〈
∑
i∈I

αi∇fi(u), x− u〉
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= −

〈∑
t∈T

λgt∇gt(u) +
∑
i∈Ih

λhi∇hi(u)−
∑
i∈Il

λGi ∇Gi(u)−
∑
i∈Il

λHi ∇Hi(u), x− u

〉

≥
∑
t∈T

λtgt(u) +
∑
i∈Ih

λhi hi(u)−
∑
i∈Il

λGi Gi(u)−
∑
i∈Il

λHi Hi(u). (12)

(i) Reasoning ad absurdum, suppose that

f(x) ≺ L(u, α, λg, λh, λG, λH). (13)

It follows from (13), α ∈ Rm
+ and

m∑
i=1

αi = 1 that 〈α, f(x)−L(u, α, λg, λh, λG, λH)〉 <

0, which is equivalent to

m∑
i=1

αi(fi(x)−fi(u))−
m∑
i=1

αi

(∑
t∈T

λtgt(u) +
∑
i∈Ih

λhi hi(u)−
∑
i∈Il

λGi Gi(u)−
∑
i∈Il

λHi Hi(u)

)
< 0.

The above inequality, together with
m∑
i=1

αi = 1, yields

m∑
i=1

αi(fi(x)−fi(u)) <

(∑
t∈T

λtgt(u) +
∑
i∈Ih

λhi hi(u)−
∑
i∈Il

λGi Gi(u)−
∑
i∈Il

λHi Hi(u)

)
.

(14)

The convexity of fi(i ∈ I) at u confirms that

〈∇fi(u), x− u〉 ≤ fi(x)− fi(u),∀i ∈ I,

leading to

〈
m∑
i=1

αi∇fi(u), x− u〉 ≤
m∑
i=1

αi(fi(x)− fi(u)). (15)

We verify from (14) and (15) that

〈
m∑
i=1

αi∇fi(u), x−u〉 <

(∑
t∈T

λtgt(u) +
∑
i∈Ih

λhi hi(u)−
∑
i∈Il

λGi Gi(u)−
∑
i∈Il

λHi Hi(u)

)
,

contradicting with (12).
(ii) Reasoning by contraposition, assume that

f(x) � L(u, α, λg, λh, λG, λH), (16)

We claim that x 6= u. If otherwise, we use (16) and x = u to derive that

a := −

(∑
t∈T

λtgt(u) +
∑
i∈Ih

λhi hi(u)−
∑
i∈Il

λGi Gi(u)−
∑
i∈Il

λHi Hi(u)

)
e � 0. (17)
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Observe by u = x ∈ Ω(x̄) and (11) that

gt(u) = gt(x) ≤ 0,∀t ∈ T, λ ∈ R|T |+ ,

hi(u) = hi(x) = 0,∀i ∈ Ih, λhi ∈ R,

−Gi(u) = −Gi(x) ≤ 0,∀i ∈ I+
0+(x̄) ∪ I+

00(x̄) ∪ I++
00 (x̄), λH

I+
0+(x̄)∪I+

00(x̄)∪I++
00 (x̄)

≥ 0,

−Hi(u) = −Hi(x) ≤ 0,∀i ∈ Î+
+0(x̄) ∪ Î+

00(x̄) ∪ I++
00 (x̄), λH

Î+
+0(x̄)∪Î+

00(x̄)∪I++
00 (x̄)

≥ 0.

The above inequalities together with I−0+(x̄) ∪ Î−+0(x̄) = ∅ imply that∑
t∈T

λtgt(u) +
∑
i∈Ih

λhi hi(u)−
∑
i∈Il

λGi Gi(u)−
∑
i∈Il

λHi Hi(u) ≤ 0.

Hence, ai ≥ 0,∀i ∈ I, contradicts with (17), which in turn leads to x 6= u. On the
other hand, we deduce from (16) and α ∈ Rm

+ that 〈α, f(x)−L(u, α, λg, λh, λG, λH)〉 ≤
0, in other words,

m∑
i=1

αi(fi(x)−fi(u))−
m∑
i=1

αi

(∑
t∈T

λtgt(u) +
∑
i∈Ih

λhi hi(u)−
∑
i∈Il

λGi Gi(u)−
∑
i∈Il

λHi Hi(u)

)
≤ 0.

Employing this, together with
m∑
i=1

αi = 1, bring us the inequality

m∑
i=1

αi(fi(x)−fi(u)) ≤
∑
t∈T

λtgt(u)+
∑
i∈Ih

λhi hi(u)−
∑
i∈Il

λGi Gi(u)−
∑
i∈Il

λHi Hi(u). (18)

Since fi(i ∈ I) are strictly convex at u and x 6= u, we have

〈∇fi(u), x− u〉 < fi(x)− fi(u),∀i ∈ I,

leading that

〈
m∑
i=1

αi∇fi(u), x− u〉 <
m∑
i=1

αi(fi(x)− fi(u)). (19)

It follows from (18) and (19) that

〈
m∑
i=1

αi∇fi(u), x−u〉 <

(∑
t∈T

λtgt(u) +
∑
i∈Ih

λhi hi(u)−
∑
i∈Il

λGi Gi(u)−
∑
i∈Il

λHi Hi(u)

)
,

contradicting with (12).
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Proposition 16. (strong duality) Let x̄ ∈ Ω be a locally weakly efficient so-
lution of (P). If (ACQ) holds at x̄ and the set ∆ is closed, then there exists

(ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ∈ Rm
+×R

|T |
+ ×Rq×Rl×Rl with

∑
i∈I

ᾱi = 1, λ̄GI+0(x̄) = 0, λ̄GI00(x̄) ≥

0, λ̄HI00(x̄) ≥ 0 and λ̄HI0+(x̄) = 0 such that (x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ∈ ΩW (x̄) and

f(x̄) = L(x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H).

Assume further that I−0+(x̄) ∪ Î−+0(x̄) = ∅ and gt(t ∈ T ), hi(i ∈ I+
h (x̄)),−hi(i ∈

I−h (x̄)), −Gi(i ∈ I+
0+(x̄)∪ I+

00(x̄)∪ I++
00 (x̄)), −Hi(i ∈ Î+

+0(x̄)∪ Î+
00(x̄)∪ I++

00 (x̄)) are
convex at x̄.

(i) If fi(i ∈ I) are convex at x̄, then (x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) is a weakly efficient
solution of DW (x̄).

(ii) If fi(i ∈ I) are strictly convex at x̄, then (x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) is an efficient
solution of DW (x̄).

Proof. In view of Proposition 10, there exists (ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ∈ Rm
+ × Λ(x̄) ×

Rq × Rl × Rl with
∑
i∈I

ᾱi = 1, λ̄GI+0(x̄) = 0, λ̄GI00(x̄) ≥ 0, λ̄HI00(x̄) ≥ 0 and λ̄HI0+(x̄) = 0

such that∑
i∈I

ᾱi∇fi(x̄)+
∑
t∈T

λ̄gt∇gt(x̄)+
∑
i∈Ih

λ̄hi∇hi(x̄)−
∑
i∈Il

λ̄Gi ∇Gi(x̄)−
∑
i∈Il

λ̄Hi ∇Hi(x̄) = 0.

Since λ̄g ∈ Λ(x̄), one has λ̄gt gt(x̄) = 0 for all t ∈ T , and thus,
∑
t∈T

λ̄gt gt(x̄) = 0.

The fact that x̄ ∈ Ω ensures that
∑
i∈Ih

λ̄hi hi(x̄) = 0. Moreover, as λGI+0(x̄) =

0 and Gi(x̄) = 0 for all i ∈ I0+(x̄) ∪ I00(x̄), we know that
∑
i∈Il

λ̄Gi Gi(x̄) = 0.

Analogously, we observe by λ̄HI0+(x̄) = 0 and Hi(x̄) = 0 for all i ∈ I00(x̄) ∪ I+0(x̄)

that
∑
i∈Il

λ̄Hi Hi(x̄) = 0. Thus, (x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ∈ ΩW (x̄) and

∑
t∈T

λtgt(x̄) +
∑
i∈Ih

λhi hi(x̄)−
∑
i∈Il

λGi Gi(x̄)−
∑
i∈Il

λHi Hi(x̄) = 0,

which is nothing else but the following equality f(x̄) = L(x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H).
(i) Now, arguing by contradiction, let us suppose that (x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) is not a
weakly efficient solution ofDW (x̄). By definition, there exists (u, α, λg, λh, λG, λH) ∈
ΩW (x̄) such that

L(x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ≺ L(u, α, λg, λh, λG, λH).

This shows that
f(x̄) ≺ L(u, α, λg, λh, λG, λH).

which contradicts with Proposition 15 (i). So, (x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) is a weakly
efficient solution to (DW (x̄)).
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(ii) Reasoning to the contrary, let us assume that (x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) is not an ef-
ficient solution toDW (x̄). Then, it guarantees the existence of (u, α, λg, λh, λG, λH) ∈
ΩW (x̄) such that

L(x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) � L(u, α, λg, λh, λG, λH),

Consequently,
f(x̄) � L(u, α, λg, λh, λG, λH).

which contradicts with Proposition 15 (ii). So, (x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) is an efficient
solution to (DW (x̄)).

Example 17. Let m = n = 2 and l = 1. Consider the following (P):
R2

+ −min f(x) = (x2
1 + x2

2 + 4x2, x1 − x2),
s.t. gt(x) = tx1 ≤ 0, t ∈ T = N,

G1(x) = x1 ≥ 0,
H1(x) = x1 + x2 ≥ 0,
G1(x)H1(x) = x1(x1 + x2) = 0.

Then, Ω = {x ∈ R2 | x1 = 0, x2 ≥ 0}. For any x̄ ∈ Ω,
(DMW (x̄)) : R2

+ −maxL(u, α, λg, λG, λH)

= (u2
1+u2

2+4u2, u1−u2)+

(∑
t∈T

tu1 − λG1 u1 − λH1 (u1 + u2)

)
(1, 1)

s.t. α1(2u1, 2u2 + 4) + α2(1,−1) +
∑
t∈T

λgt (t, 0)− λG1 (1, 0)− λH1 (1, 1) = (0, 0),

α1 + α2 = 1, λG1

 = 0, if 1 ∈ I+0(x̄),
≥ 0, if 1 ∈ I00(x̄),
∈ R, if 1 ∈ I0+(x̄),

λH1

 ∈ R, if 1 ∈ I+0(x̄),
≥ 0, if 1 ∈ I00(x̄),
= 0, if 1 ∈ I0+(x̄),

(u, α, λg, λG1 , λ
H
1 ) ∈ R2 × R2

+ × R
|T |
+ × R× R.

By taking x̄ = (0, 0) ∈ Ω, we invoke from Example 12 that all hypotheses of
Proposition 16 (i) are fulfilled. Since f(x)−f(x̄) = (x2

2+4x2,−x2) 6∈ −intR2
+,∀x ∈

Ω, one has x̄ ∈WE(P ). Now, if we select ᾱ1 = ᾱ2 = 1
2 , λ̄

G
1 = 0, λ̄H1 = 3

2 and

λ̄g(t) =

{
1, if t = 1,
0, otherwise,

then we get

1

2
(0, 4) +

1

2
(1,−1) +

∑
t∈T

λ̄gt (t, 0)− λ̄G1 (1, 0)− λ̄H1 (1, 1) = (0, 0),

and,
I0+(x̄) = I0+(x̄) = ∅, I00(x̄) = {1},

λ̄H1 = 1 ≥ 0, λ̄G1 = 0 ≥ 0, 1 ∈ I00(x̄),

which gives the result (x̄, ᾱ, λ̄g, λ̄G1 , λ̄
H
1 ) ∈ ΩW (x̄) and f(x̄) = L(x̄, ᾱ, λ̄g, λ̄G1 , λ̄

H
1 ).

Note that, for the above (x̄, ᾱ, λ̄g, λ̄G1 , λ̄
H
1 ),

Î+
00(x̄) = {1}, Î−00(x̄) = I+

00(x̄) = I−00(x̄) = I++
00 (x̄) = ∅.
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Moreover, we can verify that f1, f2, gt(t ∈ T ),−Hi(i ∈ Î+
00(x̄)) are convex at x̄.

Hence, Proposition 16 (i) asserts that (x̄, ᾱ, λ̄g, λ̄G1 , λ̄
H
1 ) is a weakly efficient solu-

tion to (DW (x̄)).
We can check directly that (x̄, ᾱ, λ̄g, λ̄G1 , λ̄

H
1 ) is a weakly efficient solution to

(DW (x̄)) as follows. Firstly, we conclude from x̄ = (0, 0) and I0+(x̄) = I0+(x̄) =
∅, I00(x̄) = {1} that

ΩW (x̄) =
{

(u, α, λg, λG1 , λ
H
1 ) ∈ R2

+ × R2 × R|T |+ × R× R | α1 + α2 = 1, λG1 ≥ 0, λH1 ≥ 0

α1(2u1, 2u2 + 4) + α2(1,−1) +
∑
t∈T

λgt (t, 0)− λG1 (1, 0)− λH1 (1, 1) = (0, 0)

}
.

Now, for an arbitrary u ∈ ΩW (x̄), the convexity of gt(t ∈ T ),−Gi(i ∈ I+
00),−Hi(i ∈

Î+
00(x̄)) at u and the definitions of the index sets deduce the inequalities

gt(u) + 〈(t, 0), x̄− u〉 ≤ gt(x̄) ≤ 0, λgt ≥ 0,∀t ∈ T,

−G1(u) + 〈−(1, 0), x̄− u〉 ≤ −G1(x̄) = 0, λG1 > 0, if 1 ∈ I+
00(x̄) ∪ I++

00 (x̄),

−H1(u) + 〈−(1,−1), x̄− u〉 ≤ −H1(x̄) = 0, λH1 > 0, if 1 ∈ Î+
00(x̄) ∪ I++

00 (x̄).

We deduce from the above inequalities, u ∈ ΩW (x̄) and I−00(x̄) = Î−00(x̄) = ∅ that

〈α1(2u1, 2u2 + 4) + α2(1,−1), x̄− u〉 = −

〈∑
t∈T

λgt (t, 0)− λG1 (1, 0)− λH1 (1, 1), x̄− u

〉

≥
∑
t∈T

λtgt(u)−
∑
i∈Il

λGi Gi(u)−
∑
i∈Il

λHi Hi(u). (20)

Reasoning by contraposition, suppose that (x̄, ᾱ, λ̄g, λ̄G1 , λ̄
H
1 ) is not a weakly ef-

ficient solution to (DW (x̄)). Then there exists (u, α, λg, λG, λH) ∈ ΩW (x̄) such
that

L(x̄, ᾱ, λ̄g, λ̄G1 , λ̄
H
1 ) ≺ L(u, α, λg, λG1 , λ

H
1 ).

This along with f(x̄) = L(x̄, ᾱ, λ̄g, λ̄G1 , λ̄
H
1 ), α ∈ R2

+ and
2∑

i=1

αi = 1 gives us that

〈α, f(x̄)− L(u, α, λg, λG, λH)〉 < 0, which is equivalent to

2∑
i=1

αi(fi(x̄)− fi(u))−

(∑
t∈T

λtgt(u)−
∑
i∈Il

λGi Gi(u)−
∑
i∈Il

λHi Hi(u)

)
< 0.

From the above relation together with (20), we derive

2∑
i=1

αi(fi(x̄)− fi(u)) < 〈α1(2u1, 2u2 + 4) + α2(1,−1), x̄− u〉 . (21)
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On the other hand, since f1, f2 are convexity at u, this yields

〈(2u1, 2u2 + 4), x̄− u〉 ≤ f1(x̄)− f1(u),

〈(1,−1), x̄− u〉 ≤ f2(x̄)− f2(u),

which, taking into account α ∈ Rm
+ , justifies that

〈α1(2u1, 2u2 + 4) + α2(1,−1), x̄− u〉 ≤
2∑

i=1

αi(fi(x̄)− fi(u)),

contradicting with (21).

4.2. The Mond-Weir type duality

For an arbitrary x̄ ∈ Ω and (u, α, λg, λh, λG, λH) ∈ Rm
+×Rn×R|T |+ ×Rq×Rl×Rl

with
∑
i∈I

αi = 1, λgT\Ig(x̄) = 0, λGI+0(x̄) = 0, λGI00(x̄) ≥ 0, λHI00(x̄) ≥ 0 and λHI0+(x̄) = 0,

we define
L̃(u, α, λg, λh, λG, λH) := f(u).

Now, we consider the Mond-Weir type dual problem as follows:
(DMW (x̄)): max L̃(u, α, λg, λh, λG, λH) = f(u)

s.t.
∑
i∈I

αi∇fi(u)+
∑
t∈T

λgt∇gt(u)+
∑
i∈Ih

λhi∇hi(u)−
∑
i∈Il

λGi ∇Gi(u)−
∑
i∈Il

λHi ∇Hi(u) = 0,

gt(u) ≥ 0(t ∈ Ig(x̄)), hi(u) = 0(i ∈ Ih(x̄)),

Gi(u) ≥ 0(i ∈ I0+(x̄) ∪ I00(x̄), Hi(u) ≥ 0(i ∈ I00(x̄) ∪ I+0(x̄))∑
i∈I

αi = 1, λgT\Ig(x̄) = 0, λGI+0(x̄) = 0, λGI00(x̄) ≥ 0, λHI00(x̄) ≥ 0, λHI0+(x̄) = 0,

(u, α, λg, λh, λG, λH) ∈ Rm
+ × Rn × R|T |+ × Rq × Rl × Rl.

The feasible set of (DMW (x̄)) is defined by

ΩMW (x̄) :=
{

(u, α, λg, λh, λG, λH) ∈ Rn × Rm
+ × R

|T |
+ × Rq × Rl × Rl |∑

i∈I
αi∇fi(u)+

∑
t∈T

λgt∇gt(u)+
∑
i∈Ih

λhi∇hi(u)−
∑
i∈Il

λGi ∇Gi(u)−
∑
i∈Il

λHi ∇Hi(u) = 0,

gt(u) ≥ 0(t ∈ Ig(x̄)), hi(u) = 0(i ∈ Ih(x̄)),

Gi(u) ≥ 0(i ∈ I0+(x̄) ∪ I00(x̄), Hi(u) ≥ 0(i ∈ I00(x̄) ∪ I+0(x̄))∑
i∈I

αi = 1, λgT\Ig(x̄) = 0, λGI+0(x̄) = 0, λGI00(x̄) ≥ 0, λHI00(x̄) ≥ 0, λHI0+(x̄) = 0,

}
.

Definition 18. Let x̄ ∈ Ω.
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(i) (ū, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ∈ ΩMW (x̄) is said to be a locally efficient solution to
(DMW (x̄)), denoted by (ū, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ∈ locE(DMW (x̄)), if there ex-
ists U ∈ N (ū) such that there is no (u, α, λg, λh, λG, λH) ∈ ΩMW (x̄) ∩ U
fulfilling

L̃(ū, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) � L̃(u, α, λg, λh, λG, λH).

(ii) (ū, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ∈ ΩMW (x̄) is called a locally weakly efficient solution
to (DMW (x̄)), denoted by (ū, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ∈ locWE(DMW (x̄)), if there
exists U ∈ N (ū) such that there is no (u, α, λg, λh, λG, λH) ∈ ΩMW (x̄) ∩ U
satisfying

L̃(ū, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ≺ L̃(u, α, λg, λh, λG, λH).

If U = Rn, the word “locally” is dropped.

Remark 19. When m = 1 and f1, gt(t ∈ T ), hi(i = 1, ..., q) and Gi, Hi(i =
1, ..., l) are continuously differentiable functions, DMW (x̄) becomes the Mond-Weir
type dual model MWDSIMEC(x̄) in [20].

Proposition 20. (weak duality) Let x ∈ Ω and (u, α, λg, λh, λG, λH) ∈ ΩMW (x̄).
Suppose that I−0+(x̄)∪Î−+0(x̄) = ∅ and gt(t ∈ T ), hi(i ∈ I+

h (x̄)),−hi(i ∈ I−h (x̄)),−Gi(i ∈
I+
0+(x̄) ∪ I+

00(x̄) ∪ I++
00 (x̄)),−Hi(i ∈ Î+

00(x̄) ∪ Î+
+0(x̄) ∪ I++

00 (x̄)) are quasiconvex at
u.

(i) If fi(i ∈ I) are pseudoconvex at u, then

f(x) 6≺ L̃(u, λg, λh, λG, λH).

(ii) If fi(i ∈ I) are strictly pseudoconvex at u, then

f(x) 6� L̃(u, λg, λh, λG, λH).

Proof. For x ∈ Ω and (u, α, λg, λh, λG, λH) ∈ ΩMW (x̄), we have

gt(x) ≤ 0(t ∈ T ), hi(x) = 0(i ∈ Ih), Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0(i ∈ Il),
(22)

∑
i∈I
∇fi(u)+

∑
t∈T

λgt∇gt(u)+
∑
i∈Ih

λhi∇hi(u)−
∑
i∈Il

λGi ∇Gi(u)−
∑
i∈Il

λHi ∇Hi(u) = 0,

(23)

and
gt(u) ≥ 0(t ∈ Ig(x̄)), hi(u) = 0(i ∈ Ih),

Gi(u) ≥ 0(i ∈ I0+(x̄) ∪ I00(x̄)), Hi(u) ≥ 0(i ∈ I00(x̄) ∪ I+0(x̄)) (24)

with
∑
i∈I

αi = 1, λgT\Ig(x̄) = 0, λGI+0(x̄) = 0, λGI00(x̄) ≥ 0, λHI00(x̄) ≥ 0, λHI0+(x̄) = 0.
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It follows from the above inequalities that

gt(x) ≤ 0 ≤ gt(u),∀t ∈ Ig(x̄),

hi(x) = hi(u) = 0,∀i ∈ I+
h (x̄) ∪ I−h (x̄),

−Gi(x) ≤ 0 ≤ −Gi(u),∀i ∈ I+
0+(x̄) ∪ I+

00(x̄) ∪ I++
00 (x̄),

−Hi(x) ≤ 0 ≤ −Hi(u),∀i ∈ Î+
00(x̄) ∪ Î+

+0(x̄) ∪ I++
00 (x̄).

Therefore, we deduce from the quasiconvexity of gt(t ∈ T ), hi(i ∈ I+
h (x̄)),−hi(i ∈

I−h (x̄)),−Gi(i ∈ I+
0+(x̄) ∪ I+

00(x̄) ∪ I++
00 (x̄)),−Hi(i ∈ Î+

00(x̄) ∪ Î+
+0(x̄) ∪ I++

00 (x̄)) at
u and the definitions of the index sets that

〈∇gi(u), x− u〉 ≤ 0, λgi ≥ 0,∀i ∈ Ig(x̄),

〈∇hi(u), x− u〉 ≤ 0, λhi > 0,∀i ∈ I+
h (x̄),

〈−∇hi(u), x− u〉 ≤ 0, λhi < 0,∀i ∈ I−h (x̄),

〈−∇Gi(u), x− u〉 ≤ 0, λGi > 0,∀i ∈ I+
0+(x̄) ∪ I+

00(x̄) ∪ I++
00 (x̄),

〈−∇Hi(u), x− u〉 ≤ 0, λHi > 0,∀i ∈ Î+
00(x̄) ∪ Î+

+0(x̄) ∪ I++
00 (x̄).

It follows from the above inequalities, I−0+(x̄) ∪ Î−+0(x̄) = ∅, λgT\Ig(x̄) = 0 and (23)

that
〈
∑
i∈I

αi∇fi(u), x− u〉

= −

〈 ∑
t∈Ig(x̄)

λgt∇gt(u) +
∑
i∈Ih

λhi∇hi(u)−
∑
i∈Il

λGi ∇Gi(u)−
∑
i∈Il

λHi ∇Hi(u), x− u

〉

= −

〈∑
t∈T

λgt∇gt(u) +
∑
i∈Ih

λhi∇hi(u)−
∑
i∈Il

λGi ∇Gi(u)−
∑
i∈Il

λHi ∇Hi(u), x− u

〉
≥ 0.

(25)

(i) Suppose by contradiction that

f(x) ≺ L(u, α, λg, λh, λG, λH),

equivalently,
fi(x) < fi(u),∀i ∈ I.

The above inequalities and the pseudoconvexity of fi(i ∈ I) at u tell us that

〈∇fi(u), x− u〉 < 0,∀i ∈ I,
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which, along with
∑
i∈I

αi = 1, lead to

〈
m∑
i=1

αi∇fi(u), x− u〉 < 0,

contradicting with (25).
(ii) Assume by contradiction that

f(x) � L(y, α, λg, λh, λG, λH).

This is equivalent to saying that{
fi(x) ≤ fi(u), ∀i ∈ I,
fi0(x) < fi0(u), for at least one i0 ∈ I,

which imply x 6= u. Granting this, we can deduce from the strictly pseudoconvexity
of fi(i ∈ I) at u that

〈∇fi(u), x− u〉 < 0,∀i ∈ I.

This, taking into account
∑
i∈I

αi = 1, yields

〈
m∑
i=1

αi∇fi(u), x− u〉 < 0,

contradicting with (25).

Proposition 21. (strong duality) Let x̄ ∈ Ω be a local weakly efficient solution to
(P). If (ACQ) holds at x̄ and the set ∆ is closed, then there exist (ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ∈
Rm

+ × R
|T |
+ × Rq × Rl × Rl with

∑
i∈I

ᾱi = 1, λgT\Ig(x̄) = 0, λ̄GI+0(x̄) = 0, λ̄GI00(x̄) ≥

0, λ̄HI00(x̄) ≥ 0 and λ̄HI0+(x̄) = 0 such that (x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ∈ ΩMW (x̄). Assume

further that I−0+(x̄) ∪ Î−+0(x̄) = ∅ and gt(t ∈ T ), hi(i ∈ I+
h (x̄)),−hi(i ∈ I−h (x̄)),

−Gi(i ∈ I+
0+(x) ∪ I+

00(x̄) ∪ I++
00 (x̄)), −Hi(i ∈ Î+

+0(x̄) ∪ Î+
00(x̄) ∪ I++

00 (x̄)) are quasi-
convex at x̄.

(i) If fi(i ∈ I) is pseudoconvex at x̄, then (x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) is a weakly
efficient solution to DMW (x̄).

(ii) If fi(i ∈ I) is strictly pseudoconvex at x̄, then (x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) is an
efficient solution to DMW (x̄).

Proof. By invoking Proposition 10, there exist (ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ∈ Rm
+ × Λ(x̄)×

Rq × Rl × Rl with
∑
i∈I

ᾱi = 1, λGI+0(x̄) = 0, λ̄GI00(x̄) ≥ 0, λ̄HI00(x̄) ≥ 0 and λ̄HI0+(x̄) = 0

such that∑
i∈I
∇fi(x̄) +

∑
t∈T

λ̄gt∇gt(x̄) +
∑
i∈Ih

λ̄hi∇hi(x̄)−
∑
i∈Il

λ̄Gi ∇Gi(x̄)−
∑
i∈Il

λ̄Hi ∇Hi(x̄) = 0.
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Since x̄ ∈ Ω and λ̄g ∈ Λ(x̄), one has λtgt(x̄) = 0 and gt(x̄) ≤ 0 for all t ∈ T . Hence,
gt(x̄) = 0 for all t ∈ Ig(x̄) and gt(x̄) < 0 for all t ∈ T \ Ig(x̄), which in turn implies
that λ̄gT\Ig(x̄) = 0. Again, the fact that x̄ ∈ Ω guarantees that hi(x̄) = 0,∀i ∈
Ih(x̄). In addition, we get from Gi(x̄) = 0 for all i ∈ I0+(x̄) ∪ I00(x̄) that Gi(x̄) ≥ 0
for all i ∈ I0+(x̄)∪ I00(x̄). Similarly, we have Hi(x̄) ≥ 0 for all i ∈ I+0(x̄)∪ I00(x̄).

Thus, (x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) ∈ ΩMW (x̄) and f(x̄) = L̃(x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H).
(i) Arguing by contradiction, suppose that (x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) is not a weakly
efficient solution to DMW (x̄). By denotation, there exists (u, α, λg, λh, λG, λH) ∈
ΩMW (x̄) such that

f(x̄) = L̃(x̄, λ̄g, λ̄h, λ̄G, λ̄H) ≺ L̃(u, λg, λh, λG, λH),

which contradicts with Proposition 20 (i), and thus, completes the proof.
(ii) Suppose to the contrary that (x̄, ᾱ, λ̄g, λ̄h, λ̄G, λ̄H) is not an efficient solution
to DMW (x̄). In other words, there exists (u, α, λg, λh, λG, λH) ∈ ΩMW (x̄) such
that

f(x̄) = L̃(x̄, λ̄g, λ̄h, λ̄G, λ̄H) � L̃(u, λg, λh, λG, λH),

which contradicts with Proposition 20 (ii). So, we arrive at the conclusion.
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