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1. INTRODUCTION

Vector continuous-time programming problem has been the subject of nu-
merous investigations in the past three decades. This problem was studied in
[3, 4, 5, 6]. In [4, 5] a fundamental tool was Gordan’s Transposition Theorem
given in [7]. In [1], Arutyunov et al. indicated that such a result is incorrect. In
[5], Nobakhtian and Pouryayevali established necessary and sufficient conditions
for the nonsmooth problem under invexity assumptions, but unfortunately, that
article used the result from [11], which is also incorrect (see [1]). In [2], Monte
and Oliveira provided new necessary optimality conditions in the type of Karush-
Kuhn-Tucker conditions for smooth continuous-time programming problem with
scalar valued objective function. The aforementioned conditions are obtained, first
for problem with inequality constraints and then for problem with both inequality
and equality constraints. The alternative theorem for obtaining these conditions
is given in [1]. To apply the alternative theorem, a specific regularity condition
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must be satisfied. Our aim in this paper is to provide necessary and sufficient
optimality conditions for differentiable vector continuous-time problem defined in
L∞([0, T ];Rn).
The paper is organized in the following way. Some preliminaries about the problem
are given in section 2, where some important definitions are stated. In section 3,
Karush-Kuhn-Tucker necessary optimality conditions are obtained. In section 4,
sufficient optimality conditions are obtained under generalized concavity assump-
tions.

2. NOTATIONS AND PRELIMINARIES

In this work, we consider the following vector continuous-time problem (VCTP):

max

∫ T

0

f(t, x(t)) dt =

(∫ T

0

f1(t, x(t)) dt, . . . ,

∫ T

0

fk(t, x(t)) dt

)
s.t. gi(t, x(t)) ≥ 0, i ∈ I = {1, . . . ,m} a.e. in [0, T ],

x ∈ L∞([0, T ];Rn),

where fj : [0, T ] × Rn → R, j ∈ J = {1, . . . , k} and gi : [0, T ] × Rn → R, i ∈ I,
are given functions and fj(t, x(t)) denotes the j-th component of f(t, x(t)) ∈ Rk.
Here for each t ∈ [0, T ], xk(t) is the kth component of x(t) ∈ Rn. All integrals
are given in the Lebesgue sense. B denotes the open unit ball with centre at the
origin, independently of the space or dimension.
Let

Ω = {x ∈ L∞([0, T ];Rn) : gi(t, x(t)) ≥ 0, i ∈ I, a.e. in [0, T ]}

be the set of feasible solutions for (VCTP). Let ε > 0 and x̂ ∈ Ω. We assume that
functions fj(t, ·) and gi(t, ·) are continuously differentiable on x̂(t) + εB̄ a.e. in
[0, T ], j ∈ J , i ∈ I. We assume also that functions fj(·, x), gi(·, x) are Lebesgue
measurable for each x, j ∈ J , i ∈ I, fj(·, x(·)), gi(·, x(·)) are essentially bounded
in [0, T ] for all x ∈ L∞([0, T ],Rn) and there exist Kf > 0 and Kg > 0 such that

‖∇fj(t, x̂(t))‖ ≤ Kf , j ∈ J, a.e in [0, T ],

‖∇gi(t, x̂(t))‖ ≤ Kg, i ∈ I, a.e in [0, T ].

The maximization in the initial problem is in the sense of an efficient point.

Definition 1. A feasible solution x̂ for (VCTP) is said to be an efficient solution
for (VCTP) if there is no other feasible solution x for (VCTP) such that∫ T

0

fj(t, x(t)) dt ≥
∫ T

0

fj(t, x̂(t)) dt, j ∈ J,

with at least one strict inequality.
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3. KARUSH-KUHN-TUCKER NECESSARY OPTIMALITY
CONDITIONS

In this section, we discuss the necessary optimality conditions for (VCTP).
Let r ∈ J and x̂ ∈ Ω. Consider an auxiliary problem:

Pr(x̂)

max

∫ T

0

fr(t, x(t)) dt

s.t. gi(t, x(t)) ≥ 0, i ∈ I, a.e. in [0, T ],

fj(t, x(t)) ≥ fj(t, x̂(t)), j ∈ J \ {r}, a.e. in [0, T ].

The following lemma shows the connection between (VCTP) and scalar problem
Pr(x̂), and plays a key role in proving main result in this section.

Lemma 2. (Chankong and Haimes [8]) If a point x̂ ∈ Ω is an efficient solution
for (VCTP), then x̂ solves Pr(x̂) for all r ∈ J .

Consider the following scalar problem:

(SCTP)

max

∫ T

0

fr(t, x(t)) dt

s.t. gi(t, x(t)) ≥ 0, i ∈ I, a.e. in [0, T ],

x ∈ L∞([0, T ];Rn).

Let b > 0. We will denote by Ib(t) the index set of b-active constraints at x̂ ∈ Ω,
that is,

Ib(t) = { i ∈ I : 0 ≤ gi(t, x̂(t)) ≤ b }, for each t ∈ [0, T ].

For all i ∈ I, let us define the function δbi : [0, T ]→ R as

δbi (t) =

{
1, i ∈ Ib(t)
0, otherwise.

Let

φr(t, x) = −
∫ T

0

∇fr(t, x̂(t))Tx dt < 0,

φi(t, x) = − gi(t, x̂(t))− δbi (t)∇gi(t, x̂(t))Tx ≤ 0, i ∈ I,
x ∈ Rn,

(1)

be a system corresponding to the problem (SCTP) and

I(t, x) =
{
p : φp(t, x) = max

{
φr(t, x), φ1(t, x), . . . , φm(t, x)

}
, t ∈ [0, T ], x ∈ Rn.



332 A. Jovic / New Optimality Conditions

Definition 3. (Arutyunov et al. [1]) System (1) is said to be regular when there
exist a function x̄(·) ∈ L∞([0, T ];Rn), real numbers R ≥ 0 and α > 0 such that
for a.e. t ∈ [0, 1] and for all x ∈ Rn with ‖x− x̄(t)‖ ≥ R, there exists a unit vector
e = e(t, x) ∈ Rn, satisfying

〈∂xφp(t, x), e〉 ≥ α ∀p ∈ I(t, x),

where ∂xφp denotes the partial subdifferential of φp at (t, x) in the sense of convex
analysis. For more information, the reader is referred to Rockafellar [12].

Remark 4. We say that x̂ ∈ Ω satisfies the constraint qualification (MFCQ), if

there exist γ̄ ∈ L∞([0, T ];Rn) and b̂ > 0 such that, for almost every t ∈ [0, T ],

∇gi(t, x̂(t))T γ̄(t) ≥ β, i ∈ Ib̂(t),

for some β > 0.

Note that (MFCQ) is a continuous-time version of the Mangasarian-Fromovitz
constraint qualification.

Lemma 5. (Monte and Oliveira [2] ) Assume that x̂ ∈ Ω satisfies (MFCQ) and
solves (SCTP). If the system (1) is regular, then there exists v̂ ∈ L∞([0, T ];Rm)
such that, for almost every t ∈ [0, T ],

∇fr(t, x̂(t)) +
∑
i∈I

v̂i(t)∇gi(t, x̂(t)) = 0,

v̂i(t)gi(t, x̂(t)) = 0, i ∈ I,
v̂i(t) ≥ 0, i ∈ I.

Now, we give necessary Karush-Kuhn-Tucker optimality conditions for (VCTP).

Theorem 6. If x̂ is an efficient solution for (VCTP), Pr(x̂) satisfies the con-
straint qualification (MFCQ) at x̂ for some r and corresponding system is regular,

then there exists (λ̂, v̂) ∈ L∞([0, T ];Rk×Rm) such that, for almost every t ∈ [0, T ],∑
j∈J

λ̂j(t)∇fj(t, x̂(t)) +
∑
i∈I

v̂i(t)∇gi(t, x̂(t)) = 0, (2)

v̂i(t)gi(t, x̂(t)) = 0, v̂i(t) ≥ 0, i ∈ I, (3)∑
j∈J

λ̂j(t) = 1, λ̂j(t) ≥ 0, j ∈ J. (4)

Proof. Since x̂ is an efficient solution of (VCTP), then by Lemma 2, x̂ solves
Pr(x̂) for all r ∈ J . Hence, by Lemma 5 there exist ŵ ∈ L∞([0, T ];Rk−1) and
û ∈ L∞([0, T ];Rm) such that

∇fr(t, x̂(t))+
∑
p∈J
p 6=r

ŵp(t)∇fp(t, x̂(t))+
∑
j∈J

ûi(t)∇gi(t, x̂(t)) = 0 a.e. in [0, T ], (5)
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ûi(t)gi(t, x̂(t)) = 0, i ∈ I, a.e. in [0, T ], (6)

ûi(t) ≥ 0, i ∈ I, a.e. in [0, T ], (7)

ŵp(t) ≥ 0, p ∈ J \ {r}, a.e. in [0, T ]. (8)

Now, multiplying all terms in (5) and (6) by 1
1+

∑
p∈J
p 6=r

ŵp(t)
, and setting

λ̂r(t) =
1

1 +
∑

p∈J
p6=r

ŵp(t)
, t ∈ [0, T ],

λ̂p(t) =
ŵp(t)

1 +
∑

p∈J
p 6=r

ŵp(t)
, p ∈ J \ {r}, t ∈ [0, T ],

and

v̂i(t) =
ûi(t)

1 +
∑

p∈J
p 6=r

ŵp(t)
, i ∈ I, t ∈ [0, T ],

we conclude that conditions (2)-(4) hold.

Remark 7. Assume that gi(t, ·) is a concave function almost everywhere in [0, T ],
i ∈ I. We say that (VCTP) satisfies the constraint qualification (SCQ), if there

exist x ∈ Ω and b̂ > 0 such that, for almost every t ∈ [0, T ],

gi(t, x(t)) ≥ β, i ∈ Ib̂(t),

for some β > 0.

Note that (SCQ) is a continuous-time version of the Slater constraint qualification.
In [2], Monte and Oliveira showed that (SCQ) is a sufficient condition for (MFCQ)
under concavity assumption.

Corollary 8. Let x̂ be an efficient solution for (VCTP). Assume that gi(t, ·) is a
concave function almost everywhere in [0, T ], i ∈ I. If Pr(x̂) satisfies the constraint
qualification (SCQ) for some r and corresponding system is regular, then there

exists (λ̂, v̂) ∈ L∞([0, T ];Rk × Rm) such that, for almost every t ∈ [0, T ],∑
j∈J

λ̂j(t)∇fj(t, x̂(t)) +
∑
i∈I

v̂i(t)∇gi(t, x̂(t)) = 0, (9)

v̂i(t)gi(t, x̂(t)) = 0, v̂i(t) ≥ 0, i ∈ I, (10)∑
j∈J

λ̂j(t) = 1, λ̂j(t) ≥ 0, j ∈ J. (11)
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4. KARUSH-KUHN-TUCKER SUFFICIENT OPTIMALITY
CONDITIONS

In this section we will present sufficient optimality criteria of the Karush-
Kuhn-Tucker type for (VCTP). The proofs of the main theorems in this section,
will be based primarily on the generalized concavity assumptions imposed on the
functions involved, and will not require the regularity condition and application of
any theorems for scalar problems. We assume that the definitions of quasiconcave,
pseudoconcave and strictly pseudoconcave functions are known to the reader. For
these, the reader is referred to [9, 10].

Theorem 9. Assume that there exist a feasible solution x̂ for (VCTP) and (λ̂, v̂) ∈
L∞([0, T ];Rk × Rm) such that, for almost every t ∈ [0, T ],∑

j∈J
λ̂j(t)∇fj(t, x̂(t)) +

∑
i∈I

v̂i(t)∇gi(t, x̂(t)) = 0, (12)

v̂i(t)gi(t, x̂(t)) = 0, v̂i(t) ≥ 0, i ∈ I, (13)∑
j∈J

λ̂j(t) = 1, λ̂j(t) > 0, j ∈ J. (14)

If the function
∑

j∈J λ̂j(t)fj(t, ·) is pseudoconcave in its second argument at x̂(t)
almost everywhere in [0, T ], and

∑
i∈I v̂igi(t, ·) is quasiconcave in its second ar-

gument at x̂(t) almost everywhere in [0, T ], then x̂ is an efficient solution for
(VCTP).

Proof. From x ∈ Ω and (13), we have

v̂i(t)gi(t, x(t)) ≥ v̂i(t)gi(t, x̂(t)) = 0, i ∈ I, ∀x ∈ Ω a.e. in [0, T ],

i.e. ∑
i∈I

v̂i(t)gi(t, x(t)) ≥
∑
i∈I

v̂i(t)gi(t, x̂(t)), ∀x ∈ Ω a.e. in [0, T ]. (15)

Since
∑

i∈I v̂i(t)gi(t, ·) is quasiconcave at x(t) = x̂(t) a.e. in [0, T ],
(15) yields∑

i∈I
v̂i(t)∇gi(t, x̂(t))T (x(t)− x̂(t)) ≥ 0, ∀x ∈ Ω, a.e. in [0, T ]. (16)

From (12) and (16), we obtain∑
j∈J

λ̂j(t)∇fj(t, x̂(t))T (x(t)− x̂(t)) ≤ 0, ∀x ∈ Ω, a.e. in [0, T ].

Since
∑

j∈J λ̂j(t)fj(t, ·) is pseudoconcave at x̂(t) a.e. in [0, T ],∑
j∈J

λ̂j(t)fj(t, x̂(t)) ≥
∑
j∈J

λ̂j(t)fj(t, x(t)), ∀x ∈ Ω, a.e. in [0, T ].
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Integrating the previous inequality from 0 to T , we have∫ T

0

∑
j∈J

λ̂j(t)fj(t, x̂(t)) dt ≥
∫ T

0

∑
j∈J

λ̂j(t)fj(t, x(t)) dt, ∀x ∈ Ω. (17)

Let us assume that x̂ is not efficient for (VCTP). Then there exists some point
x̄ ∈ Ω such that

fj(t, x̄(t)) dt ≥ fj(t, x̂(t)) dt for all j ∈ J, a.e. in [0, T ],

and for at least one index i is

fi(t, x̄(t)) dt > fi(t, x̂(t)) dt a.e. in [0, T ].

Because every λ̂j(t), j ∈ J was assumed to be positive a.e. in [0, T ], we obtain∫ T

0

∑
j∈J

λ̂j(t)fj(t, x̄(t)) dt >

∫ T

0

∑
j∈J

λ̂j(t)fj(t, x̂(t)) dt.

This is a contradiction with (17), thus x̂must be an efficient solution for (VCTP).

Theorem 10. Assume that there exist a feasible solution x̂ for (VCTP) and

(λ̂, v̂) ∈ L∞([0, T ];Rk × Rm) such that, for almost every t ∈ [0, T ],∑
j∈J

λ̂j(t)∇fj(t, x̂(t)) +
∑
i∈I

v̂i(t)∇gi(t, x̂(t)) = 0, (18)

v̂i(t)gi(t, x̂(t)) = 0, v̂i(t) ≥ 0, i ∈ I, (19)∑
j∈J

λ̂j(t) = 1, λ̂j(t) > 0, j ∈ J. (20)

If the function
∑

j∈J λ̂jfj(t, ·) is quasiconcave in its second argument at x̂(t) al-
most everywhere in [0, T ] and

∑
i∈I v̂igi(t, ·) is strictly pseudoconcave in its second

argument at x̂(t) almost everywhere in [0, T ], then x̂ is an efficient solution for
(VCTP).

Proof. From x ∈ Ω and (19), we have

v̂i(t)gi(t, x(t)) ≥ v̂i(t)gi(t, x̂(t)) = 0, i ∈ I, ∀x ∈ Ω a.e. in [0, T ],

i.e. ∑
i∈I

v̂i(t)gi(t, x(t)) ≥
∑
i∈I

v̂i(t)gi(t, x̂(t)), ∀x ∈ Ω a.e. in [0, T ]. (21)

Since ∑
i∈I

v̂i(t)gi(t, ·)
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is strictly pseudoconcave at x(t) = x̂(t) a.e. in [0, T ], (21) yields∑
i∈I

v̂i(t)∇gi(t, x̂(t))T (x(t)− x̂(t)) > 0, ∀x ∈ Ω, (22)

such that x(t) 6= x̂(t) a.e. in [0, T ]. From (18) and (22), we obtain∑
j∈J

λ̂j(t)∇fj(t)(t, x̂(t))T (x(t)− x̂(t)) < 0, ∀x ∈ Ω,

such that x(t) 6= x̂(t) a.e. in [0, T ].

Since
∑

j∈J λ̂j(t)fj(t, ·) is quasiconcave at x̂(t) a.e. in [0, T ],∑
j∈J

λ̂j(t)fj(t, x̂(t)) >
∑
j∈J

λ̂j(t)fj(t, x(t)), ∀x ∈ Ω, such that x(t) 6= x̂(t),

a.e. in [0, T ]. Therefore, we have∑
j∈J

λ̂j(t)fj(t, x̂(t)) ≥
∑
j∈J

λ̂j(t)fj(t, x(t)), ∀x ∈ Ω, a.e. in [0, T ].

Integrating the previous inequality from 0 to T , we obtain∫ T

0

∑
j∈J

λ̂j(t)fj(t, x̂(t)) dt ≥
∫ T

0

∑
j∈J

λ̂j(t)fj(t, x(t)) dt ∀x ∈ Ω.

So, as in the proof of Theorem 9, we conclude that x̂ is an efficient solution for
(VCTP).

Following the same approach, we obtain sufficient conditions for (VCTP) without
complementary slackness condition.

Theorem 11. Let x̂ be a feasible solution for (VCTP) and A denotes the index
set of all the binding inequality constraints at x̂(t), i.e.,
A = { i ∈ I : gi(t, x̂(t)) = 0 a.e. in [0, T ] }. Assume that for each i ∈ A, gi(t, ·)
is quasiconcave in its second argument at x̂(t) almost everywhere in [0, T ] and

there exists (λ̂, v̂) ∈ L∞([0, T ];Rk × Rm) such that, for almost every t ∈ [0, T ],∑
j∈J

λ̂j(t)∇fj(t, x̂(t)) +
∑
i∈I

v̂i(t)∇gi(t, x̂(t)) = 0, (23)

v̂i(t) ≥ 0, i ∈ A, (24)

v̂i(t) = 0, i ∈ I \A, (25)∑
j∈J

λ̂j(t) = 1, λ̂j(t) > 0, j ∈ J. (26)

If the function
∑

j∈J λ̂j(t)fj(t, ·) is pseudoconcave in its second argument at x̂(t)
almost everywhere in [0, T ], then x̂ is an efficient solution for (VCTP).
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Proof. For any feasible x,

gi(t, x(t)) ≥ gi(t, x̂(t)) = 0, i ∈ A, a.e. in [0, T ].

By the quasiconcavity gi(t, ·) at x̂(t), i ∈ A a.e. in [0, T ], we have

∇ĝi(t, x̂(t))T (x(t)− x̂(t)) ≥ 0, i ∈ A, a.e. in [0, T ].

Since v̂i(t) ≥ 0, i ∈ A, a.e. in [0, T ], we obtain∑
i∈A

v̂i(t)∇gi(t, x̂(t))T (x(t)− x̂(t)) ≥ 0, ∀x ∈ Ω, a.e. in [0, T ]. (27)

From (23) and (27), we have∑
j∈J

λ̂j(t)∇fj(t, x̂(t))T (x(t)− x̂(t)) ≤ 0, ∀x ∈ Ω, a.e. in [0, T ]. (28)

Since
∑

j∈J λ̂j(t)fj(t, ·) is pseudoconcave in its second argument at x̂(t) almost
everywhere in [0, T ], we obtain∑

j∈J
λ̂jfj(t, x̂(t)) ≥

∑
j∈J

λ̂jfj(t, x(t)), ∀x ∈ Ω, a.e. in [0, T ].

It follows∫ T

0

∑
j∈J

λ̂j(t)fj(t, x̂(t)) dt ≥
∫ T

0

∑
j∈J

λ̂j(t)fj(t, x(t)) dt ∀x ∈ Ω.

Hence, x̂ must be an efficient solution for (VCTP).

5. CONCLUSIONS

This paper addressed the vector continuous-time problems. The main auxiliary
results employed in the derivation of the necessary optimality criteria are a new
version of the Karush–Kuhn–Tucker-type optimality conditions for scalar problem
and scalarization method. Sufficient optimality conditions were given in (strictly)
generalized concavity concept. Obtaining duality results is going to be a topic of
future works. It would be of interest to see how the similar approach can be ex-
tended to examine optimality conditions and duality as well as their applications
on the nonsmooth vector continuous-time problems.
Acknowledgement: This research was supported by the Ministry of Educa-
tion,Science and Technology of Serbia, project number 174015.
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