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Abstract: Any supply chain supposes production and pricing decisions. The most in-
fluential factor that affects a sales decision is the price of a product, which in turn, affects
the configuration of the demand. Further, holding the produced goods means also the
occurrence of deterioration as a common phenomenon, which may lead to excessive loss
if left untreated. Thus, an investment in preservation process helps in controlling deteri-
oration efficiently. Moreover, incorporation of the environmental factor presents the need
of the hour in the current situation of environmental imbalance. To address the above
issues, we consider volume agility to avoid any excessive storage and backlogging costs,
carbon-emissions and energy-usage to address the performance of our model regarding
the environment, and investment in preservation process to control the loss due to dete-
rioration. Also, the demand of the product is taken as price-reliant. The investment in
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preservation, production rate, and price of the product are taken as the decision variables
so as to maximize the total inventory turnover. Validity and robustness of the model is
analyzed through numerical and sensitivity analysis. A wide-ranging applicability of the
developed study is also provided.

Keywords: Inventory, Production, Volume agility, Deterioration, Preservation technol-

ogy, Energy usage, Price-reliant demand, Carbon-emissions.
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1. INTRODUCTION

In manufacturing systems, the constant production rate has been explicitly as-
sumed by numerous researchers. Such an assumption holds only if the demand of
a product is known with certainty. However, with constant changes in the markets
and recent trends, the demand of a product fluctuates in the long run, which may
lead to shortages or high storage costs, depending upon the rise or fall. Thus, vol-
ume agility is an effective tool to deal with this situation efficiently. [46] put forth
a pioneer research by introducing a theory on agility in the manufacturing process.
Further, the impact of flexible production rate on various production models has
been studied by [33], [31], and [32], etc. [43] investigated a scenario for a decaying
product under the assumption of flexible production rate. Later, [42] explored the
optimum policy for a decaying product with volume agility where the demand is
assumed to be dependent on inventory level. Then, [41] studied a manufacturing
system with faulty products along with volume agility. [50] examined the effect
of inflation in a defective manufacturing scenario and flexible production. [51]
inspected an ordering model with volume agility, variable demand, and inflation.
[14] also formulated a model with flexible production rate. [13] studied an ordering
system with multiple items and greening under the assumption of flexible produc-
tion rate. [44] modeled a two-warehouse vendor-supplier framework with volume
agility.

The growing concern towards the environment enabled researchers to imple-
ment the realistic features such as carbon-emissions and energy usage in their
modeling, caused largely by customers’ awareness and the sustainability aspect
of business. Various researchers incorporated energy usage viz. [6], [5], [35], etc.
[36] presented a supply-chain model with carbon-footprints, energy consumption,
and imperfect process. In the same year, [34] developed a production model with
learning in the manufacturing process and energy efficiency.

Further, the environment experts are signifying the importance of green strate-
gies as they are beneficial in both ways, economically and environmentally. [15],
[45], [49] studied carbon footprints in their respective inventory modeling. Lately,
[20] constructed a sustainable and integrated supply chain model with an invest-
ment in setup cost along with harmful carbon emissions. Recently, [21] put forth
a sustainable supply chain scenario with features like defect management, carbon-
emissions, and more. In the same year, [11] proposed a three tier supply chain
model with deteriorating items and carbon-emissions, and [4] studied the reduced
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impact of carbon-emissions in the supply chain with vendor managed inventory of
deteriorating items.

The inventory reduction caused by deterioration cannot be overlooked in an
inventory system. The presence of deterioration affects the revenue and thereby
decreases the total profit of the system. The foremost research in this area was
given in [22]. Later, [12], [55], [7], [23], [25], etc. analyzed the topic in detail.
Some models with constant and Weibull deterioration rate were also developed by
[37], [47], etc. If the products are prone to deterioration, they require a special
care to be handled and the due loss to be minimized. In this regard, preservation
technology is an efficient strategy to minimize the loss occurred due to deterio-
ration. [27], [17], [18], [51], and [58] to mention a few. Freshly, in [30], [24], and
[19], this field has been explored under various assumptions. Lately, [40], studied
the preservation technology model for deteriorating items with trade-credit. From
the above-mentioned studies, it can be observed that the effect of preservation
technology along with volume agility on optimal policies has not been studied yet.

The demand in its nature is always price sensitive. So, determination of a sell-
ing price is the most crucial decision of any business. Various researchers studied
different natures of demand. Its price-sensitive nature was explored by [1], [2],
[39], [3], [8], [16], [10], and [9] under various other practical settings like deteri-
oration, partial backordering, credit period, lead time considerations, etc. The
demand depending upon both the price and stock was explored by [38]. How-
ever, the demand depending upon the price and time was studied by [56], [54],
etc. Later, [57] developed a dynamic pricing model for seasonal goods under spot
and forward purchase demand pattern. [53] investigated a supply chain scenario
under stochastic demand environment. Lately, [29] developed an inventory sce-
nario with mark-up price reliant demand for products of imperfect quality under
credit-policies, shortages, and deterioration.

Our model has the following research questions and highlights:

• How the preservation strategies assist in controlling the deterioration rate?

• The basic nature of demand is considered as price-sensitive.

• The rate of production is assumed to be variable, thus, the concept of volume
agility is implemented.

• What is energy usage? How is it implemented in the production scenario?

• The environmental aspect is considered through the incorporation of carbon-
emission while production and storage of goods.

• What will be the optimum production rate, investment in preservation tech-
nology, and selling price under the proposed production policy?

• What will be the behavior of the model under changing parameters?

The present framework fulfills the current literature gap by proposing a pro-
duction inventory model for decaying items. The product’s demand is supposed
to be price-reliant. Further, the production rate is not constant, instead, the con-
cept of volume agility is incorporated. An investment in preservation strategy
is considered to curb the loss due to deterioration. The environmental aspect of
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the business is also showcased through the consideration of carbon-emissions and
energy consumptions costs.

2. NOTATIONS AND ASSUMPTIONS

2.1. Notations

t1 = time where the production stops (weeks)
T = time where the inventory cycle ends (weeks)
h1 = storage cost of the item ($/unit/unit time)
d1 = deterioration cost of the item ($/unit/unit time)
K = setup cost per order
ξ = material cost per unit (fixed)
ω = labour cost
$ = tool/die cost
δ(ψ) = rate of deterioration with preservation technology (units/ unit time),

(δ(ψ) = y0e
−uψ)

y0 = rate of deterioration when investment in preservation strategy is zero
(units/ unit time)

u = the sensitive parameter of preservation technology investment to
the deterioration rate (0 < u < 1)

λ(S) = rate of demand as a function of selling price (λ(S) = α− βS)
(units/unit time)

α = demand scale
β = price sensitive parameter
γ = idle power for the manufacturing process in the start position (kW)
j = variable component of the power, a constant (kWh/unit)
b1 = energy cost
ep = carbon emission cost in production
eh = carbon emission cost in holding

Decision variable

ψ = cost of preservation technology investment ($/unit/unit time)
P = production rate
S = selling price ($/unit)

2.2. Assumptions

1. The model considers only a single item.

2. The lead time is zero and backlogging is not allowed.

3. The rate of demand λ(S) is a function of sales price S:

λ(S) = α− βS

where α is the demand scale, and β is price sensitive parameter.
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4. The production rate P is flexible, where P is greater than demand rate.

5. The unit production cost χ(P ) =
(
ξ + ω

P +$P
)

where ξ, ω, $ are all pos-

itive constants. The production cost/unit
(
ω
P

)
tends to decrease as rate of

production (P ) increases. Further,the last term ($P ) related to the tool/die
costs is proportionate with respect to production rate.

6. The proportion of reduced deterioration rate after using investment in preser-
vation strategy is δ(ψ) = y0e

−uψ, and this function satisfies the following
conditions δ′(ψ) > 0, δ′′(ψ) < 0 and δ(0) = y0.

3. MATHEMATICAL MODEL

The proposed scenario is depicted in Figure 1. The cycle begins at time zero
with no inventory and rises till t1 at rate P and concurrently reduces due to
demand and deterioration. During (t1, T ), the inventory diminishes only due to
demand rate and deterioration. The deterioration rate is being skillfully taken
care of by an investment in preservation policy. Finally, the inventory exhausts at
time T .
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Figure 1: Inventory representation

During the time interval (0, t1)

dI1(t)

dt
+ δ(ψ)I1(t) = P − λ(S), 0 ≤ t ≤ T1 (1)

Using I1(0) = 0, the solution of Eq. (1) is

I1(t) =
(P − λ(S))

δ(ψ)
(1− eδ(ψ)t) (2)
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During (t1, T ), the inventory equation is depicted as:

dI2(t)

dt
+ δ(ψ)I2(t) = −λ(S), t1 ≤ t ≤ T (3)

Using I2(T ) = 0, the solution of Eq. (3)

I2(t) =
λ(S)

δ(ψ)
(eδ(ψ)(T−t1) − 1) (4)

Now put t = t1 in Eq. (2) and (4) we have

t1 =
1

δ(ψ)
ln

[
1 +

λ(S)

P

(
eδ(ψ)T − 1

)]
(5)

The different components are:

• Set-up cost

SC = K (6)

• Storage cost HC

HC = h1

[∫ t1

0

I1 (t) dt+

∫ T

t1

I2 (t) dt

]

=
h1

δ(ψ)2
{[(P − λ(S))(t1δ(ψ) + e−δ(ψ)t1 − 1)]

+ [λ(S)(eδ(ψ)(T−t1) − 1− (T − t1)δ(ψ))]} (7)

• Deterioration cost DC

DC = d1δ(ψ)

[∫ t1

0

I1 (t) dt+

∫ T

t1

I2 (t) dt

]

=
d1
δ(ψ)

{[(P − λ(S))(t1δ(ψ) + e−δ(ψ)t1 − 1)]

+ [λ(S)(eδ(ψ)(T−t1) − 1− (T − t1)δ(ψ))]} (8)

• Preservation cost

PC = ψ.T (9)

• Production cost PC

PC =
(
ξ +

ω

P
+$P

)∫ t1

0

Pdt

= Pt1

(
ξ +

ω

P
+$P

)
(10)
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In order to obtain the energy costs, we define

η = γ + j.P (11)

where j is fixed (kWh/unit) derived from the behavior of the manufacturing system
(see [26]).

From (11), the specific energy usage /unit of treated material is (see [36]):

SEC =
(γ + j.P )tP

P.tP
(12)

• Energy cost

EC = b1(SEC.λ(S)) (13)

• Carbon emission cost in production

CP = ep.P.t1 (14)

• Carbon emission cost in holding

CH = eh

[∫ t1

0

I1 (t) dt+

∫ T

t1

I2 (t) dt

]
=

eh
δ(ψ)2

{[(P − λ(S))(t1δ(ψ) + e−δ(ψ)t1 − 1)]

+ [λ(S)(eδ(ψ)(T−t1) − 1− (T − t1)δ(ψ))]} (15)

• Total Revenue

TR = λ(S) • T • S (16)

• Total profit

TP = [TR− (SC +HC +DC + PC + PC + EC + CP + CH)]

=
λ(S)TS

T
−
(
K

T
+

(h1 + eh)

Tδ(ψ)2
{[(P − λ(S))(t1δ(ψ) + e−δ(ψ)t1 − 1)]

+ λ(S)(e
δ(ψ)(T−t1)

− 1− (T − t1)δ(ψ))}

+
d1

Tδ(ψ)
{[(P − λ(S))(t1δ(ψ) + e−δ(ψ)t1 − 1)]

+ λ(S)(e
δ(ψ)(T−t1)

− 1− (T − t1)δ(ψ))}

+ ψ +
Pt1
T

(
ξ +

ω

P
+$P

)
+
b1(SEC.λ(S))

T
+
ep.P.t1
T

)
(17)
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= λ(S)S − (h1 + eh)

T

[
(P − λ(S))

(
t21
2

)
+
λ(S) (T − t1)

2

2

]

− d1
T

[
(P − λ(S)) t21δ(ψ)

2
+
λ(S)δ(ψ) (T − t1)

2

2

]

− K

T
− α− Pt1

T

(
ξ +

ω

P
+$P

)
+ b1

(γ + j.P )tP
P.tP .T

.λ(S) +
ep.P.t1
T

(18)

Solution procedure
Now, to establish the optimality of equation (13), the necessary condition sat-

isfied these equations:

∂TP (S, ψ, P )

∂S
= 0 (19)

∂TP (S, ψ, P )

∂P
= 0 (20)

∂TP (S, ψ, P )

∂ψ
= 0 (21)

The sufficient conditions for maximize the total profit are H1 < 0, H2 > 0, H3 < 0,
the hessian matrix H is estimated as:

H =



∂2TP

∂ψ2

∂2TP

∂ψ∂S

∂2TP

∂ψ∂P

∂2TP

∂S∂ψ

∂2TP

∂S2

∂2TP

∂S∂P

∂2TP

∂P∂ψ

∂2TP

∂P∂S

∂2TP

∂P 2


and

H1 =
∂2TP

∂ψ2
,

H2 =

∣∣∣∣∣∣∣∣∣
∂2TP

∂ψ2

∂2TP

∂ψ∂S

∂2TP

∂S∂ψ

∂2TP

∂S2

∣∣∣∣∣∣∣∣∣
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H3 = detH =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2TP

∂ψ2

∂2TP

∂ψ∂S

∂2TP

∂ψ∂P

∂2TP

∂S∂ψ

∂2TP

∂S2

∂2TP

∂S∂P

∂2TP

∂P∂ψ

∂2TP

∂P∂S

∂2TP

∂P 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where H1, H2, and H3 are the minors of the Hessian matrix H.

Due to the extremely non-linear nature of the profit function, the sufficient
condition can not be proven mathematically, thereby graphical method is employed
to establish concavity and is represented in Figures 2, 3, and 4 with the help of
Mathematica.
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Figure 2: Concavity for profit vs. P and S
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Figure 3: Concavity for profit vs. ψ and S
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Figure 4: Concavity for profit vs. ψ and P

Numerical Example

The developed model is demonstrated using a numerical example. The follow-
ing parameter values are taken in appropriate units for the numerical illustration:
u = 0.05, y0 = 0.05, h1 = 1.5, ξ = 25, ω = 1300, $ = 0.008, K = 600, α = 140,
β = 0.2, d = 250, T = 11, γ = 100, j = 10, ep = 3, eh = 1.5, b1 = 0.15.

The following optimal results are obtained:

Total profit = 21096.05, Production rate = 191.56, Selling price =
371.36, investment in preservation technology = 103, Production time
= 3.78

Sensitivity Analysis

t1 (production ψ (investment P (production S (selling Total

time) in preservation) rate) price) profit

120 2.5817 102.77 236.71 322.56 15036.15

130 3.0974 103.23 215.43 347.02 17938.12

α 140 3.7784 103.00 191.56 371.36 21096.05

(demand scale) 150 4.7783 101.47 163.41 395.44 24511.76

160 6.7976 94.97 123.51 418.73 28189.52

0.16 3.9191 102.86 187.14 458.72 27202.92

0.18 3.8476 102.93 189.37 410.18 23809.18

β 0.20 3.7784 103.00 191.56 371.36 21096.05

(price sensitive) 0.22 3.7106 103.06 193.74 339.60 18877.93

0.24 3.6447 103.11 195.91 313.15 17031.08

Table 1:
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• The increase in the demand scale parameter (α) increases the demand (see
Table 1). Thus, higher number of units are required to be produced in order
to meet the demand, which eventually increases the production time along
with the decrease in the production rate. Also, due to increase in demand,
the movement of goods will be fast, thus, the deterioration will be reduced,
hence, the investment in preservation process is also reduced. High demand
implies higher sales, thus profit is increasing.To make the best out of this
condition, the price of a product can be increased to fetch higher profits.

 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 

 

Figure 5: Sensitivity with respect to α

• An upsurge in price-sensitive parameter (β) of demand reduces the total
profit due to the negative aspect of β on demand (see Table 1). Further,
due to decreased sales, the accumulated inventory will deteriorate, thus,
investment in preservation will be increased. The decision makers may give
some lucrative offers to the customers in order to boost sales.
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Figure 6: Sensitivity with respect to β
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t1 ψ P S Total profit

0.01 - - - - -

0.03 3.9273 153.97 184.45 371.30 21031.21

u (sensitive parameter of preservation) 0.05 3.7784 103.00 191.56 371.36 21096.05

0.07 3.7216 78.49 194.41 371.38 21126.41

0.09 3.6903 63.89 196.02 371.39 21144.24

Table 2:

• A rise in the sensitive parameter of preservation (u) increases the effective-
ness of the preservation technology even if lesser is invested in it, thus, in-
vestment is decreasing (see Table 2). The decision-makers may increase the
production rate so as to take benefit of this situation. In accordance with
this, the total profit increases.
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Figure 7: Sensitivity with respect to u

t1 ψ P S Total profit

0.8 3.8135 102.82 190.45 370.22 21241.06

1 3.8108 102.83 190.52 370.63 21227.85

ep(emission in production) 3 3.7784 103.00 191.56 371.36 21096.05

5 3.7465 103.17 191.58 372.39 20964.66

7 3.7152 103.33 193.59 373.42 20833.69

1.1 3.0894 104.81 234.26 371.38 21196.06

1.3 3.3805 104.07 214.05 371.43 21144.94

eh (emission in holding) 1.5 3.7784 103.00 191.56 371.36 21096.05

1.7 4.3765 101.28 165.52 371.07 21050.34

1.9 5.4807 97.65 132.49 370.28 21009.85

Table 3:
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Figure 8: Sensitivity with respect to ep
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Figure 9: Sensitivity with respect to eh

• The carbon-emission costs increase when production and storage of goods
result in decreasing the total profits (see Table 3). Further, for such a situa-
tion it is necessary to monitor the demand so as to produce only the requisite
quantity and avoid emissions during production and holding of goods.

t1 ψ P S Total profit

0.05 4.4179 101.15 164.25 370.50 21121.77

0.10 4.0561 102.23 178.65 370.97 21108.38

b1 (cost of energy) 0.15 3.7784 103.00 191.56 371.36 21096.05

0.20 3.5553 103.61 203.37 371.69 21084.56

0.25 3.3700 104.10 214.37 371.97 21073.74

Table 4:
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Figure 10: Sensitivity with respect to b1

• A rapid manufacturing boost the energy consumption and related carbon-
footprints. Further, when the energy cost increases, the total profit of the
system decreases (see Table 4). For such a case it is suggested that a bigger
lot size with a lower speed can assist in reducing the energy usage.

t1 ψ P S Total profit

1200 4.7269 100.17 153.56 370.41 21134.2

1250 4.1697 101.88 173.79 370.94 21114.07

ω (labour cost) 1300 3.7784 103.00 191.56 371.36 21096.05

1350 3.4820 103.81 207.65 371.69 21079.58

1400 3.2469 104.44 222.49 371.97 21064.3

0.004 2.6601 105.84 271.82 371.82 21155.2

0.006 3.2648 104.36 221.59 371.51 21123.09

$ (tool/die cost) 0.008 3.7784 103.00 191.56 371.36 21096.05

0.010 4.2346 101.71 170.99 371.22 21072.27

0.012 4.6518 100.46 155.71 371.09 21050.81

Table 5:
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Figure 11: Sensitivity with respect to ω
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Figure 12: Sensitivity with respect to $

• The costs linked with production system affect the overall system costs sig-
nificantly. When the labour cost increases, the production time duration
decreases, and the rate of production is increased. The total profit decreases
slightly (see Table 5).

• When the tool/die cost increases, production time increases, however, the
rate of production decreases. The total turnover decreases considerably (see
Table 5).

4. CONCLUSION

Environmental issues can be addressed in a sustainable way by adopting green
techniques in the manufacturing world. It is important to implement the envi-
ronmental factors such as carbon-emissions during production & storage of goods,
energy usage while production, etc., so as to give a model that fits the current
need of economic and environmental crisis. Hence, we developed a production
model with items of deteriorating quality and demand being price-sensitive with
volume agility, and considered investment in preservation technology to deal with
deterioration. The incorporation of volume agility enables manufacturers to man-
age fluctuating demand efficiently. Also, we took the environmental aspects into
consideration by implementing the carbon-emissions and energy usage during the
production process. Numerical and sensitivity analysis are performed for struc-
turing the model features and to impart useful managerial insights. A valuable
contribution of the developed model could be made by executing non-instantaneous
deterioration. Further, the presence of imperfect quality items and disruption can
also be accounted in the manufacturing process.
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