
Yugoslav Journal of Operations Research
32 (2022), Number 1, 29–44
DOI: https://doi.org/10.2298/YJOR200615012K

HIGHER ORDER SYMMETRIC DUALITY
FOR MULTIOBJECTIVE FRACTIONAL

PROGRAMMING PROBLEMS OVER CONES

Arshpreet KAUR
School of Mathematics, Thapar Institute of Engineering and Technology (Deemed

University), Patiala 147004, India
arshpreet.kaur@thapar.edu

Mahesh Kumar SHARMA
School of Mathematics, Thapar Institute of Engineering and Technology (Deemed

University), Patiala 147004, India
mksharma@thapar.edu

Received: June 2020 / Accepted: February 2021

Abstract: This article studies a pair of higher order nondifferentiable symmetric frac-
tional programming problem over cones. First, higher order cone convex function is
introduced. Then using the properties of this function, duality results are set up, which
give the legitimacy of the pair of primal dual symmetric model.

Keywords: Higher Order Symmetric Duality, Higher Order (Φ, ρ)- convexity, Fractional

Programs, Nondifferentiable Programs, Generalized Convexity.

MSC: 90C29,90C30,90C32,90C46.

1. INTRODUCTION

In mathematical programming, symmetric programs are those programs in
which primal is the dual of the dual. In other words, the programming problems
in which the dual of the dual is primal again, are the symmetric programming
problems. Linear programs naturally fall into this category of programs. But for
nonlinear programs, such occurrence is quite exceptional.
Dorn [7] first studied symmetric quadratic programs, and Dantzig [6] formulated
symmetric nonlinear programs and established weak and strong duality theorems.
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Bazaraa and Goode [1] generalized the formulation of symmetric duality intro-
duced in [6] to include the case where the inequality constraints are defined via
convex cones and their polars. Mond [19] studied nonsmooth functions called
support function of a compact convex set thus introducing non-differentiable sym-
metric primal dual pairs. Gulati et al. [10] formulated multiobjective symmetric
type programs and gave duality results for Wolfe and Mond-Weir type symmet-
ric dual multiobjective programming problems. The symmetric programs in which
the objective function is a ratio of two functions, namely fractional programs, were
given by Chandra et al. [4]. The notion was further extended to a multiobjective
fractional symmetric program by Weir [24]. Another class of fractional symmetric
programs are studied by Jayswal and Jha [13]. Kim et al. [17] studied multiob-
jective symmetric program with cone constraints, which was later extended to a
non-differentiable multiobjective program involving cones in [16].
As it is known that dual gives a bound on the value of the primal program,
the second and higher order duals give further tighter bounds due to the addi-
tion of parameters. So they help in finding better approximation to the value of
the primal problem. Bector and Chandra [2] introduced second order symmetric
dual program for pseudobonvex and pseudoboncave functions. The multiobjective
counterpart was studied by Yang and Hou [25], which was further extended to a
symmetric program over cone constraints for second order cone convex functions
in [18]. Gulati and Mehndiratta [11] considered a non-differentiable multiobjec-
tive symmetric dual pair involving arbitrary cones, thus generalizing the existing
classes.
Talking about higher order duality, Gulati and Gupta [9] first studied higher order
duality for a symmetric program. Then, Chen [5] discussed about higher order
multiobjective non-differentiable symmetric program. Gupta et al. [12] introduced
higher order (F, α, ρ, d)- convex functions and studied Wolfe and Mond-Weir type
dual symmetric models, whereas Suneja and Louhan [21] studied higher order
symmetric programs with cone invexity and cone constraints. Recently, higher
order multiobjective non-differentiable fractional symmetric programs with cone
constraints are studied in [8, 23]. Some higher order programs are also discussed
in [15].
In this paper, motivated by the the work of Dubey and Gupta [8], we study frac-
tional vector optimization problems in which constraints are defined over cones
and the ordering of the objectives is described with respect to some closed convex
cones. This aspect of symmetric programs is not studied so far. The class of func-
tions used in this direction is higher order (Φ, ρ)- cone convex function. Lastly, we
formulate and prove weak, strong, and converse duality theorems.

2. PRELIMINARIES AND DEFINITIONS

The preference among the alternatives must conform to the decision maker’s
inclinations. So, a suitable domination structure is defined to find an optimized
solution of a mathematical program. This leads to the study of mathematical pro-
gramming problems over arbitrary cones. Let Rk be a k− dimensional Euclidean
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space and Rk+ denote its nonnegative orthant. Let K be a closed convex pointed
cone in Rk with non-empty interior. Consider a general vector optimization prob-
lem in which ordering is defined with respect to the convex cone K:

(V P ) K−Minimize f(x)

x ∈ S0 ⊆ Rn.

Where S0 is the set of feasible solutions and S0 ⊆ X ⊆ Rn and f : X → Rk.

Definition 1. A point u ∈ S0 is a weak efficient solution of (VP) if @ x ∈ S0

such that f(u) − f(x) ∈ int K. A point u ∈ S0 is an efficient solution of (VP) if
@ x ∈ S0 such that f(u)− f(x) ∈ K \ {0}.

Now we give definition of generalized convex functions named as K−(Φ, ρ) convex
functions. First we give a brief overview of (Φ, ρ) convexity and its generalizations.
The concept of (Φ, ρ) convexity was set forth by Caristi et al. [3] to extend the
class of (F, ρ) convex functions. The following definitions have made grounds for
the definition introduced in this paper.
Consider a vector valued function f = (f1, f2, ...., fk) : X → Rk differentiable on
X, so we have component functions fi given by fi : X → R for i = 1, 2, ..., k and
a vector ρ = (ρ1, ρ2, ..., ρk) ∈ Rk.
For a natural number n and a set X ⊆ Rn consider a functional Φ : X × X ×
Rn+1 → R. Any element of Rn+1 takes the form (a, b), where a ∈ Rn and b ∈ R.

Definition 2. Φ is convex on Rn+1 if, for fixed x, u ∈ X, the following holds:

Φ(x, u; (λ(ξ1, ρ1) + (1− λ)(ξ2, ρ2))) 5 λΦ(x, u; (ξ1, ρ1)) + (1− λ)Φ(x, u; (ξ2, ρ2)),

for all ξ1, ξ2 ∈ Rn, ρ1, ρ2 ∈ R, and λ ∈ [0, 1]. Throughout this paper, we assume
that Φ(x, u; (0, r)) ≥ 0 for x, u ∈ X, and r ∈ R+.

The (Φ, ρ) convex functions introduced in [3] are defined as follows.

Definition 3. The scalar valued functions fi : X → R, is (Φ, ρi) convex on X if

fi(x)− fi(u) = Φ(x, u; (∇fi(u), ρi)), ∀ x ∈ X

and some ρi ∈ R.

This class of functions were extended to cone (Φ, ρ) convex functions by Kapoor
[14] who gave the following definition.

Definition 4. [14] f : X → Rk is K−(Φ, ρ) convex at u on X if for every x ∈ X,
the following holds:

f(x)− f(u)− Φ(x, u, (∇f(u), ρ)) ∈ K.

In this, vector Φ is given by
Φ(x, u; (∇f(u), ρ)) = (Φ(x, u; (∇f1(u), ρ1),Φ(x, u; (∇f2(u), ρ2), ...,Φ(x, u; (∇fk(u), ρk)).
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The higher-order convex functions were defined by Tripathy and Devi [22] in the
next definition.

Definition 5. A scalar function fi given by fi : X → R is higher-order (Φ, ρi)-
invex at u ∈ X with respect to hi(hi : X × Rn → R) if there exist real functional
Φ and scalar ρi ∈ R such that for all x ∈ X we have

fi(x)− fi(u)− hi(u, p) + pT∇phi(u, p) ≥ Φ(x, u; (∇fi(u) +∇phi(u, p), ρi)).

Now we define higher-order K − (Φ, ρ)- convex functions. For this, assume
f,Φ, ρ as defined above and F : X × Rn → Rk be a differentiable function.

Definition 6. A function f is higher-order K − (Φ, ρ)- convex at u ∈ X with
respect to F and p where p = (p1, p2, ..., pk) and each pi ∈ Rn, if there exist real
functional Φ and ρ such that for all x ∈ X we have



f1(x) − f1(u) − F1(u, p1) + pT1 ∇p1
F1(u, p1) − Φ(x, u, (∇f1(u) +∇p1

F1(u, p1), ρ1))

f2(x) − f2(u) − F2(u, p2) + pT2 ∇p2
F2(u, p2) − Φ(x, u, (∇f2(u) +∇p2

F2(u, p2), ρ2))

−−
−−

fk(x) − fk(u) − Fk(u, pk) + pTk ∇pkFk(u, pk) − Φ(x, u, (∇fk(u) +∇pkFk(u, pk), ρk))


∈ K

Special Cases:.

1. In this definition if k = 1 and K = R+ then we have the higher-order (Φ, ρ)
convex functions defined by Tripathy and Devi [22].

2. If p = 0 or no approximation functions are used, then we have K − (Φ, ρ)
convex functions defined by Kapoor [14]. In addition to this, if k = 1 and
K = R+ then the function reduce to (Φ, ρ) convex functions defined by
Caristi et al. [3].

A class of higher-order (Φ, ρ) convex functions is also discussed in [20].

Definition 7. For a cone K, the positive polar cone(or dual cone) of K, denoted
by K?, is defined as

K? = {y ∈ Rn : xT y = 0 ∀ x ∈ K}

We consider a non-differentiable problem in this paper. The non-differentiable
part is due to support function and we briefly discuss the related notions below.

Definition 8. If C is a compact and convex subset of Rn, then support function
of C at x is given by S(x|C) := max {xT y : y ∈ C}. This function being convex
and finite has subdifferential

∂S(x|C) := {z ∈ C : xT z = S(x|C)}.
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Definition 9. If D ⊆ Rn is convex, then the normal cone at a point z in D is
defined as:

ND(z) := {y ∈ Rn : yT (x− z) 5 0, ∀x ∈ D}

If D is compact convex set, then taking into consideration both the definitions, one
can infer that y ∈ ND(z) ⇔ zT y = S(y|D) or say z ∈ ∂S(y|D).

Consider F (·, ·) to be continuously differentiable such that F (x, y) : Rn1 ×Rn2 →
R, then
• ∇xF,∇yF denote gradient vectors with respect to x, y, respectively.
• ∇xxF,∇yyF are n1 × n1 and n2 × n2 symmetric Hessian matrices respectively.

3. HIGHER ORDER SYMMETRIC PROGRAMS

In this section we introduce multiobjective fractional symmetric primal dual
pair. Let us suppose that S1 andS2 are two non-empty open sets in Rn1 andRn2

respectively. Further, suppose that A1 andA2 are closed and convex cones in
Rn1 andRn2 respectively, such that A1 × A2 ⊂ S1 × S2. Consider the follow-
ing non-differentiable multiobjective fractional symmetric programs (MFNSP) and
(MFNSD):

Primal (MFNSP)

K −Min L(x, y, p) = (L1(x, y, p), L2(x, y, p), ..., Lk(x, y, p))

where Li(x, y, p) =
fi(x, y) + S(x|Bi)− yT zi + Fi(x, y, pi)− pTi ∇piFi(x, y, pi)
gi(x, y)− S(x|Ei) + yT ri +Gi(x, y, pi)− pTi ∇piGi(x, y, pi)

subject to

−
k∑
i=1

λi(∇yfi(x, y)− zi +∇piFi(x, y, pi)

−Li(x, y, pi)(∇ygi(x, y) + ri +∇piGi(x, y, pi))) ∈ A∗
2,

yT
k∑
i=1

λi(∇yfi(x, y)− zi +∇piFi(x, y, pi)

−Li(x, y, pi)(∇ygi(x, y) + ri +∇piGi(x, y, pi))) = 0,

λ ∈ intK∗, x ∈ A1, zi ∈ Di, ri ∈ Fi, i = 1, 2, ..., k, λT e = 1.

Dual (MFNSD)

K −Max M(u, v, q) = (M1(u, v, q),M2(u, v, q), ...,Mk(u, v, q))

where Mi(u, v, q) =
fi(u, v)− S(v|Di) + uTwi + F̄i(u, v, qi)− qTi ∇qi F̄i(u, v, qi)
gi(u, v) + S(v|Fi)− uT ti + Ḡi(u, v, qi)− qTi ∇qiḠi(u, v, qi)
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subject to
k∑
i=1

λi(∇xfi(u, v) + wi +∇qi F̄i(u, v, qi)

−Mi(u, v, qi)(∇xgi(u, v)− ti +∇qiḠi(u, v, qi))) ∈ A∗
1,

uT
k∑
i=1

λi(∇xfi(u, v) + wi +∇qi F̄i(u, v, qi)

−Mi(u, v, qi)(∇xgi(u, v)− ti +∇qiḠi(u, v, qi))) 5 0,

λ ∈ intK∗, v ∈ A2, wi ∈ Bi, ti ∈ Ei, i = 1, 2, ..., k, λT e = 1.

For i = 1, 2, . . . , k the following assumptions have been used while constructing
the above programs pair:

(1.) fi, gi : S1 × S2 → R are differentiable functions,

(2.) The differentiable functions Fi, Gi, F̄i, Ḡi are such that Fi, Gi : S1 × S2 ×
Rn2 → R, are higher-order approximation functions of fi, gi, respectively,
with respect to second variable. F̄i, Ḡi : S1×S2×Rn1 → R are higher-order
approximation functions of fi, gi, respectively, with respect to first variable.

(3.) Bi, Ei are compact convex sets in Rn1 and Di, Fi are compact convex sets
in Rn2 ,

(4.) pi ∈ Rn2 , qi ∈ Rn1 , λ ∈ Rk,

(5.) A∗
1, A

∗
2 are positive polar cones of A1, A2, respectively,

(6.) in the feasible region, the numerators and denominators are assumed to be
nonnegative and positive, respectively.

Special Cases:.

1. If K = Rk+, Fi = Hi, φi = F̄i, ξi = Ḡi and C1 = A1, C2 = A2, then this
above discussed model becomes the one discussed by Dubey and Gupta [8].

2. If k = 1, A1 = Rn+, A2 = Rm+ , with all the higher-order approximations are
taken to be zero, or pi, qi = 0 and the sets Bi = Di = Ei = Fi = {0}. Then
the symmetric programs (MFNSP) and (MFNSD) reduce to the symmetric
fractional program discussed by Chandra et al. [4].

To make the theorems easier, the following parametric program has been for-
mulated. We take two parameters l = (l1, l2, ..., lk), and m = (m1,m2, ...,mk)
and express the programs (MFNSP) and (MFNSD) equivalently as multiobjective
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non-differentiable symmetric programs (EMNSP) and (EMNSD), respectively.

Primal (EMNSP)

K −Min l = (l1, l2, ..., lk)

subject to

fi(x, y) + S(x|Bi)− yT zi + Fi(x, y, pi)− pTi ∇piFi(x, y, pi)
−li(gi(x, y)− S(x|Ei) + yT ri +Gi(x, y, pi)− pTi ∇piGi(x, y, pi)) = 0, (1)

−
k∑
i=1

λi(∇yfi(x, y)− zi +∇piFi(x, y, pi)

−li(∇ygi(x, y) + ri +∇piGi(x, y, pi))) ∈ A∗
2, (2)

yT
k∑
i=1

λi(∇yfi(x, y)− zi +∇piFi(x, y, pi)

−li(∇ygi(x, y) + ri +∇piGi(x, y, pi))) = 0, (3)

λ ∈ intK∗, x ∈ A1, zi ∈ Di, ri ∈ Fi, i = 1, 2, ..., k, λT e = 1. (4)

Dual (EMNSD)

K −Max m = (m1,m2, ...,mk)

subject to

fi(u, v)− S(v|Di) + uTwi + F̄i(u, v, qi)− qTi ∇qi F̄i(u, v, qi)
−mi(gi(u, v) + S(v|Fi)− uT ti + Ḡi(u, v, qi)− qTi ∇qiḠi(u, v, qi)), (5)

k∑
i=1

λi(∇xfi(u, v) + wi +∇qi F̄i(u, v, qi)

−mi(∇xgi(u, v)− ti +∇qiḠi(u, v, qi))) ∈ A∗
1, (6)

uT
k∑
i=1

λi(∇xfi(u, v) + wi +∇qi F̄i(u, v, qi)

−mi(∇xgi(u, v)− ti∇qiḠi(u, v, qi))) 5 0, (7)

λ ∈ intK∗, v ∈ A2, wi ∈ Bi, ti ∈ Ei, i = 1, 2, ..., k, λT e = 1. (8)

4. DUALITY RESULTS

In this Section, we validate the duality relations between the equivalent sym-
metric programs (EMNSP) and (EMNSD) under generalized convexity assump-
tions.

Theorem 10 (Weak Duality Theorem). Let (x, y, l, z, r, λ, p) be a feasible so-
lution of (EMNSP) and (u, v,m,w, t, λ, q) be a feasible of (EMNSD). Assume that:

(i) (f(·, v) + (·)Tw −m(g(·, v)− (·)T t)) is higher-order K − (Φ1, ρ1) convex, in
first variable, at u for fixed v, with respect to F̄ − mḠ and q where Φ1 :
Rn1 × Rn1 × Rn1+1 → R and ρ1 = (ρ1

1, ..., ρ
1
k),
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(ii) (−(f(x, ·) + (·)T z) + l(g(x, ·) − (·)T r)) is higher-order K − (Φ2, ρ2) convex,
in second variable, at y for fixed x, with respect to −H + lG and p where
Φ2 : Rn2 × Rn2 × Rn2+1 → R and ρ2 = (ρ2

1, ..., ρ
2
k) ,

(iii) Φ1(x, u, (a, ρ̄)) + aTu = 0, ∀ a ∈ A∗
1, ρ

1 = 0
and Φ2(v, y, (b, ρ̃)) + bT y = 0, ∀ b ∈ A∗

2 and ρ2 = 0.

(iv) Rk+ ⊆ K, gi(x, v) + vT ri − xT ti > 0, i = 1, 2, ..., k. and for some ω ∈
intRk+, κ ∈ K \ {0}, ωκ ∈ K \ {0}.

Then (m− l) /∈ K \ {0}.

Proof. We validate the theorem by contradiction. Suppose that the weak duality
theorem does not hold, which means that (m − l) ∈ K \ {0}. Now for some
λ ∈ intK∗ and using (iv) we have

k∑
i=1

λi(li −mi)(gi(x, v) + vT ri − xT ti) < 0. (9)

(i) gives that



f1(x, v) + xT w1 −m1(g1(x, v) − xT t1) − (f1(u, v) + uTw1 −m1(g1(u, v) − uT t1))

−(F̄1(u, v, q1) −m1Ḡ1(u, v, q1)) + qT1 ∇q1 (F̄1(u, v, q1) −m1Ḡ1(u, v, q1))

−Φ1(x, u, (∇xf1(u, v) + w1 −m1(∇xg1(u, v) − t1) +∇q1 (F̄1(u, v, q1) −m1Ḡ1(u, v, q1))), ρ11))

−−

−−

fk(x, v) + xT wk −mk(gk(x, v) − xT tk) − (fk(u, v) + uTwk −mk(gk(u, v) − uT tk))

−(F̄k(u, v, qk) −mkḠk(u, v, qk)) + qTk ∇qk (F̄k(u, v, qk) −mkḠk(u, v, qk))

−Φ1(x, u, (∇xfk(u, v) + wk −mk(∇xgk(u, v) − tk) +∇qk (F̄k(u, v, qk) −mkḠk(u, v, qk))), ρ1k))



∈ K

Since λ ∈ intK∗ we get the following

k∑
i=1

λi
[
fi(x, v) + xTwi −mi(gi(x, v)− xT ti)− (fi(u, v) + uTwi −mi(gi(x, v)− uT ti))

− (F̄i(u, v, qi)−miḠi(u, v, qi)) + qTi ∇qi(F̄i(u, v, qi)−miḠi(u, v, qi))

− Φ1(x, u; (∇xfi(u, v) + wi −mi(∇xgi(u, v)− ti)
+∇qi(F̄i(u, v, qi)−miḠi(u, v, qi)), ρ

1
i ))
]
= 0.

(10)

Divide this equation by
∑k
i=1 λi = τ (it is clear that

∑k
i=1

λi
τ = 1) and using
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convexity of Φ1, the following is deduced

k∑
i=1

λi
τ

[
fi(x, v) + xTwi −mi(gi(x, v)− xT ti)− (fi(u, v) + uTwi −mi(gi(u, v)− uT ti))

−(F̄i(u, v, qi)−miḠi(u, v, qi)) + qTi ∇qi(F̄i(u, v, qi)−miḠi(u, v, qi))
]

= Φ1(x, u,
1

τ

k∑
i=1

λi(∇xfi(u, v) + wi −mi(∇xgi(u, v)− ti)

+∇qi(F̄i(u, v, qi)−miḠi(u, v, qi)), ρ
1
i )). (11)

As a1 =
∑k
i=1 λi(∇xfi(u, v)+wi−mi(∇xgi(u, v)−ti)+∇qi(F̄i(u, v, qi)−miḠi(u, v, qi))) ∈

A∗
1 due to (6), multiply this with 1

τ > 0 to get a = a1
τ and since A∗

1 is a convex

cone, we have a ∈ A∗
1. Use this and ρ̄ =

∑k
i=1

λi
τ ρ

1
i ≥ 0 (by hypothesis (iii)) to

get the following inequality

1

τ

k∑
i=1

λi[fi(x, v) + xTwi −mi(gi(x, v)− xT ti)− (fi(u, v) + uTwi −mi(gi(u, v)− uT ti))

− (F̄i(u, v, qi)−miḠi(u, v, qi)) + qTi ∇qi(F̄i(u, v, qi)−miḠi(u, v, qi))]

= Φ1(x, u,
1

τ

k∑
i=1

λi(∇xfi(u, v) + wi −mi(∇xgi(u, v)− ti)

+∇qi(F̄i(u, v, qi)−miḠi(u, v, qi)), ρ
1
i ))

= Φ1(x, u; (a, ρ̄))

= −aTu
= 0, (due to (6)).

(12)

On rearranging the terms in above equation and adding (5), then using feasibility
conditions (4) and (8), we obtain the following

k∑
i=1

λi(fi(x, v) + xTwi − S(v|Di)−mi(gi(x, v)− xT ti + vT ri) = 0. (13)

On the same lines, using (ii) the following can be obtained

k∑
i=1

λi(−fi(x, v) + vT zi − S(x|Bi) + li(gi(x, v) + vT ri − xT ti) = 0. (14)

Adding equations (13) and (14) we get

k∑
i=1

λi(li −mi)(gi(x, v) + vT ri − xT ti) = 0.
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This is a contradiction to equation (9). So it is concluded that the supposition
was wrong and hence, weak duality holds under the given set of assumptions.

Theorem 11 (Strong Duality Theorem). Let (x̄, ȳ, l̄, z̄, r̄, λ̄, p̄) be an efficient
solution of (EMNSP) and fix λ = λ̄ in (EMNSD). Further, if the following assump-
tions hold:

(i) For i = 1, 2, ..., k,

Fi(x̄, ȳ, 0) = ∇piFi(x̄, ȳ, 0) = ∇xFi(x̄, ȳ, 0) = ∇yFi(x̄, ȳ, 0) = 0,

Gi(x̄, ȳ, 0) = ∇piGi(x̄, ȳ, 0) = ∇xGi(x̄, ȳ, 0) = ∇yGi(x̄, ȳ, 0) = 0,

F̄i(x̄, ȳ, 0) = ∇qi F̄i(x̄, ȳ, 0) = Ḡi(x̄, ȳ, 0) = ∇qiḠi(x̄, ȳ, 0) = 0

(ii) for any i = 1, 2, ..., k, the Hessian matrix ∇pipi(Fi(x̄, ȳ, p̄i)− liGi(x̄, ȳ, p̄i))is
positive or negative definite,

(iii) The set of vectors {∇yfi(x̄, ȳ) − zi + ∇yFi(x̄, ȳ, p̄i) − li∇ygi(x̄, ȳ) + ri +
∇yGi(x̄, ȳ, p̄i), ∇yfi(x̄, ȳ)−zi+∇piFi(x̄, ȳ, p̄i)−li∇ygi(x̄, ȳ)+ri+∇piGi(x̄, ȳ, p̄i), i =
1, 2, ..., k} is linearly independent.

(iv) if for p̄i ∈ Rn2 such that p̄i 6= 0 implies
∑k
i=1 p̄i(∇yfi(x̄, ȳ)−zi+∇yFi(x̄, ȳ, p̄i)−

li(∇ygi(x̄, ȳ) + ri +∇yGi(x̄, ȳ, p̄i))) 6= 0

(v) l̄i > 0, i = 1, 2, ..., k

then the point (x̄, ȳ, l̄, w̄, t̄, λ̄, q̄ = 0) is a feasible solution of the dual (EMNSD).
Furthermore, if hypotheses of weak duality theorem hold for every feasible solu-
tion of dual, then (x̄, ȳ, l̄, w̄, t̄, λ̄, q̄ = 0) is an efficient solution of (EMNSD) and
objective function values of (EMNSP) and (EMNSD) are equal.

Proof. Since (x̄, ȳ, l̄, z̄, r̄, λ̄, p̄) is given to be an efficient solution of the primal
(EMNSP), then by necessary optimality conditions [21] , there exist α ∈ K∗, β ∈
Rk+, γ ∈ A2, δ ∈ R+, η ∈ R, w̄i and t̄i ∈ Rn1 such that the following hold

[ k∑
i=1

βi(∇xfi(x̄, ȳ) + w̄i +∇xFi(x̄, ȳ, p̄i)− l̄i(∇xgi(x̄, ȳ)− t̄i +∇xGi(x̄, ȳ, p̄i)))

+ (γ − δȳ)T
k∑
i=1

λi(∇yxfi(x̄, ȳ)− li∇yxgi(x̄, ȳ))

+

k∑
i=1

∇pix(Fi(x̄, ȳ, p̄i)− liGi(x̄, ȳ, p̄i)T ((γ − δȳ)λi − βip̄i)
]T

(x− x̄) = 0, ∀ x ∈ A1.

(15)
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k∑
i=1

βi(∇yfi(x̄, ȳ)− z̄i +∇yFi(x̄, ȳ, p̄i)− l̄i(∇ygi(x̄, ȳ) + r̄i +∇yGi(x̄, ȳ, p̄i)))

+ (γ − δȳ)T
k∑
i=1

λi∇yy(fi(x̄, ȳ)− l̄igi(x̄, ȳ)) +

k∑
i=1

(∇piyFi(x̄, ȳ, p̄i)

− l̄i∇piyGi(x̄, ȳ, p̄i))((γ − δȳ)Tλi − βipi)−
k∑
i=1

δλi(∇yfi(x̄, ȳ)− z̄i +∇piFi(x̄, ȳ, p̄i)

− l̄i(∇ygi(x̄, ȳ) + r̄i +∇piGi(x̄, ȳ, p̄i))) = 0.

(16)

αi − βi((gi(x̄, ȳ)− S(x̄|Ei) + ȳT r̄i +Gi(x̄, ȳ, p̄i))− p̄Ti ∇piGi(x̄, ȳ, p̄i))
−(γ − δȳ)T (∇ygi(x̄, ȳ) + ri +∇piGi(x̄, ȳ, p̄i)) = 0, i = 1, 2, ..., k. (17)

((γ − δȳ)λi − βip̄i)T∇pipi(Fi(x̄, ȳ, p̄i)− liGi(x̄, ȳ, p̄i)) = 0, (18)

βiȳ + (γ − δȳ)λi ∈ NDi(z̄i), (19)

βi l̄iȳ + (γ − δȳ)l̄iλi ∈ NFi(r̄i), (20)

(γ − δȳ)T (∇yfi(x̄, ȳ)− zi +∇piFi(x̄, ȳ, p̄i)
−li(∇ygi(x̄, ȳ) + ri +∇piGi(x̄, ȳ, p̄i)))− ξi + η = 0, (21)

γT
k∑
i=1

λi(∇yfi(x̄, ȳ)− zi +∇piFi(x̄, ȳ, p̄i)

−li(∇ygi(x̄, ȳ) + ri +∇piGi(x̄, ȳ, p̄i))) = 0, (22)

δyT
k∑
i=1

λi(∇yfi(x̄, ȳ)− zi +∇piFi(x̄, ȳ, p̄i)

−li(∇ygi(x̄, ȳ) + ri +∇piGi(x̄, ȳ, p̄i))) = 0, (23)

ξT λ̄ = 0, η(λ̄e− 1) = 0, (24)

w̄i ∈ Bi, t̄i ∈ Ei, x̄T t̄i = S(x̄|Ei), x̄T w̄i = S(x̄|Bi), (25)

(α, β, γ, δ, ξ, η) 6= 0. (26)

In (24) we have ξT λ̄ = 0. As R+
k ⊆ K ⇒ K∗ ⊆ R+

k we have intK∗ ⊆ intR+
k

implies λ̄ > 0. So we have ξ = 0. From hypothesis (ii) and equation (18) we get

(γ − δȳ)λ̄i = βip̄i, i = 1, 2, ..., k. (27)

CLAIM: βi 6= 0, for any i = 1, 2, ..., k.
Because if βi0 = 0, for some i0 ∈ 1, 2, ..., k, then we have

(γ − δȳ)λ̄i0 = 0
λ̄>0
=⇒ γ = δȳ (28)

Put this in equation (27), we get βip̄i = 0 for each i ∈ 1, ..., k. Using these values
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in (16) to get

k∑
i=1

βi(∇yfi(x̄, ȳ)− zi +∇yFi(x̄, ȳ, p̄i)− li(∇ygi(x̄, ȳ) + ri +∇yGi(x̄, ȳ, p̄i)))

−
k∑
i=1

δλ̄i(∇yfi(x̄, ȳ)− zi +∇piFi(x̄, ȳ, p̄i)− li(∇ygi(x̄, ȳ) + ri +∇piGi(x̄, ȳ, p̄i))) = 0.

(29)

This due to (iii) gives βi = 0 and δλ̄i = 0, for all i = 1, 2, ..., k ⇒ δ = 0, (∵ λ̄ > 0).
Now, due to (17) αi = 0, ∀ i = 1, 2, ..., k. Equation (28) gives γ = 0 and equation
(21) ⇒ η = 0 respectively. ξ is already 0. ⇒ (α, β, γ, δ, ξ, η) = 0, which is a
contradiction to necessary optimality conditions constructed above. So we have
proved our claim that βi 6= 0 for any i = 1, 2, ..., k.
Now multiply equation (21) with λ̄i and take its sum over the range of i to get

(γ − δȳ)T
k∑
i=1

λ̄i(∇yfi(x̄, ȳ)− zi +∇piFi(x̄, ȳ, p̄i)

− li(∇ygi(x̄, ȳ) + ri +∇piGi(x̄, ȳ, p̄i))) + ηT (λ̄e) = 0

(30)

and (22)-(23) give

(γ−δȳ)T
k∑
i=1

λ̄i(∇yfi(x̄, ȳ)−zi+∇piFi(x̄, ȳ, p̄i)−Li(∇ygi(x̄, ȳ)+ri+∇piGi(x̄, ȳ, p̄i))) = 0.

(31)

Now (31)-(30) give

ηT λ̄e = 0

⇒ η = 0 (∵ λ̄ 6= 0, e 6= 0).
(32)

Putting this in (21), we get

(γ−δȳ)T (∇yfi(x̄, ȳ)−zi+∇piFi(x̄, ȳ, p̄i)−li(∇ygi(x̄, ȳ)+ri+∇piGi(x̄, ȳ, p̄i))) = 0.

(33)

So due to (27)

βip̄i(∇yfi(x̄, ȳ)−zi+∇piFi(x̄, ȳ, p̄i)−li(∇ygi(x̄, ȳ)+ri+∇piGi(x̄, ȳ, p̄i))) = 0. (34)

As βi 6= 0,

p̄i(∇yfi(x̄, ȳ)−zi+∇piFi(x̄, ȳ, p̄i)−li(∇ygi(x̄, ȳ)+ri+∇piGi(x̄, ȳ, p̄i))) = 0. (35)
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Or

k∑
i=1

p̄i(∇yfi(x̄, ȳ)−zi+∇piFi(x̄, ȳ, p̄i)−li(∇ygi(x̄, ȳ)+ri+∇piGi(x̄, ȳ, p̄i))) = 0,

(36)

and by (iv), we have each of p̄i = 0. So from (27), we get

γ = δȳ. (37)

By putting the obtained values in (15) and (16), we get[ k∑
i=1

βi(∇xfi(x̄, ȳ) + w̄i − l̄i(∇xgi(x̄, ȳ)− t̄i))
]T

(x− x̄) = 0, ∀x ∈ A1, (38)

and

k∑
i=1

(βi − δλi)(∇yfi(x̄, ȳ)− z̄i − l̄i(∇ygi(x̄, ȳ) + r̄i))]
T = 0. (39)

Again, using (iii), we have βi − δλ̄i = 0 ⇒ βi = δλ̄i. As λ̄i > 0, βi ∈ Rk+ and
β 6= 0, we have δ > 0. Use this in (38) to get

[

k∑
i=1

λ̄i(∇xfi(x̄, ȳ) + w̄i − l̄i(∇xgi(x̄, ȳ)− t̄i))]T (x− x̄) = 0, ∀x ∈ A1. (40)

Put x = 0 (as (40) holds for any x ∈ A1) we have

−
[ k∑
i=1

λ̄i(∇xfi(x̄, ȳ) + w̄i − l̄i(∇xgi(x̄, ȳ)− t̄i))
]T
x̄ = 0. (41)

⇒
[ k∑
i=1

λ̄i(∇xfi(x̄, ȳ) + w̄i − l̄i(∇xgi(x̄, ȳ)− t̄i))
]T
x̄ 5 0. (42)

For convex cone A1, x̄ ∈ A1 ⇒ x+ x̄ ∈ A1, ∀ x ∈ A1. So (40) becomes[ k∑
i=1

λ̄i(∇xfi(x̄, ȳ) + w̄i − l̄i(∇xgi(x̄, ȳ)− t̄i))
]T
x = 0, ∀ x ∈ A1. (43)

The above equation holds for every x ∈ A1 so we can say that

k∑
i=1

λ̄i(∇xfi(x̄, ȳ) + w̄i − l̄i(∇xgi(x̄, ȳ)− t̄i)) ∈ A∗
1, (44)

which is dual feasibility condition (6). Since (43) holds for every x ∈ A1 and x̄ is
a feasible solution of primal, so at x = x̄ the following is true. By putting x = x̄
in (43), we have[ k∑

i=1

λ̄i(∇xfi(x̄, ȳ) + w̄i − l̄i(∇xgi(x̄, ȳ)− t̄i))
]T
x̄ = 0. (45)
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As x̄ ∈ A1 ⇒ (41) and (45) give

k∑
i=1

λ̄i(∇xfi(x̄, ȳ) + w̄i − l̄i(∇xgi(x̄, ȳ)− t̄i))]T x̄ = 0. (46)

Hence, the third feasibility condition of the dual, given by equation (7), is obtained.
Now in (19), as γ = δȳ, βi > 0 ⇒ ȳ ∈ NDi(z̄i) which means, ȳT z̄i = S(ȳ|Di).
Similarly, due to (20), (25) and hypothesis (v) we have ȳT r̄i = S(ȳ|Fi). Moreover
pi = 0 as obtained above, use them in equation (1) to get

fi(x̄, ȳ)+ x̄T w̄i−S(ȳ|Di)− l̄i(gi(x̄, ȳ)− x̄T t̄i+S(ȳ|Fi)) = 0, i = 1, 2, .., k. (47)

Equation (37) gives that ȳ = γ
δ ∈ A2 From equations (44), (46), and (47) we can

conclude that (x̄, ȳ, l̄, w̄, t̄, λ̄, q̄ = 0) is a feasible solution of dual (EMNSD) and
the objective values of (EMNSP) and (EMNSD) are equal, i.e., l̄i = mi. Now, for
the second part of the theorem, if (x̄, ȳ, l̄, w̄, t̄, λ̄, q̄ = 0) is not an efficient solution
for dual (EMNSD), then there exists another feasible solution (ũ, ṽ, m̃, w̃, t̃, λ̃, q̃)
of dual such that m̃ − l̄ ∈ K \ {0}. But this contradicts weak duality theorem.
Hence, (x̄, ȳ, l̄, w̄, t̄, λ̄, q̄ = 0) is efficient for (EMNSD). Hence, the result.

Theorem 12 (Converse Duality Theorem). Let (ū, v̄, m̄, w̄, t̄, λ̄, q̄) be an ef-
ficient solution of (EMNSD) and fix λ = λ̄ in (EMNSP). Then under the following
set of assumptions:

(i) For i = 1, 2, ..., k,

Fi(ū, v̄, 0) = ∇piFi(ū, v̄, 0) = Gi(ū, v̄, 0) = ∇piGi(ū, v̄, 0) = 0,

F̄i(x̄, ȳ, 0) = ∇qi F̄i(ū, v̄, 0) = ∇xF̄i(ū, v̄, 0) = ∇yF̄i(ū, v̄, 0) = 0,

Ḡi(x̄, ȳ, 0) = ∇qiḠi(ū, v̄, 0) = ∇xḠi(ū, v̄, 0) = ∇yḠi(ū, v̄, 0) = 0

(ii) for any i = 1, 2, ..., k, the Hessian matrix ∇qiqi(F̄i(ū, v̄, q̄i)−miḠi(ū, v̄, q̄i))is
positive or negative definite,

(iii) the set of vectors {∇xfi(ū, v̄) + wi + ∇xF̄i(ū, v̄, q̄i) − mi∇xgi(ū, v̄) − ti +
∇xḠi(ū, v̄, q̄i),
∇xfi(ū, v̄) + wi + ∇qi F̄i(ū, v̄, q̄i) − mi∇xgi(ū, v̄) − ti + ∇qiḠi(ū, v̄, q̄i), i =
1, 2, ..., k} are linearly independent.

(iv) if for q̄i ∈ Rn1 such that q̄i 6= 0, implies
∑k
i=1 q̄i(∇xfi(ū, v̄)+wi+∇xF̄i(ū, v̄, q̄i)−

mi∇xgi(ū, v̄)− ti +∇xḠi(ū, v̄, q̄i)) 6= 0

(v) m̄i > 0, i = 1, 2, ..., k.

the point (ū, v̄, m̄, w̄, t̄, λ̄, q̄) is a feasible solution of (EMFNSP). Furthermore if
hypotheses of weak duality theorem hold for every feasible solution of (EMFNSP),
then (ū, v̄, m̄, w̄, t̄, λ̄, q̄) is an efficient solution of (EMFNSP).

Proof. The proof follows on the lines of Theorem 11.
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