
Yugoslav Journal of Operations Research
31 (2021), Number 2, 165–180
DOI: https://doi.org/10.2298/YJOR200218001K

OPTIMAL DECISIONS ON SOFTWARE
RELEASE AND POST-RELEASE TESTING: A

UNIFIED APPROACH

Vivek KUMAR
Department of Operational Research, Faculty of Mathematical Sciences,

New Academic Block, University of Delhi, India
vivekrajput.du.aor@gmail.com

Saurabh PANWAR
Department of Operational Research, Faculty of Mathematical Sciences,

New Academic Block, University of Delhi, India
saurabhpanwar89@yahoo.com

P. K. KAPUR
Amity Center for Interdisciplinary Research,

Amity University, Noida, India
pkkapur1@gmail.com

Ompal SINGH
Department of Operational Research, Faculty of Mathematical Sciences,

New Academic Block, University of Delhi, India
drompalsingh1@gmail.com

Received: May 2020 / Accepted: October 2020

Abstract: In this research, a novel approach is developed where a testing team delivers
the software product first and extends the testing process for additional time in the user
environment. During the operational phase, users also participate in the fault detection
process and notify the defects to the software. In this study, a reliability growth model is
proposed using a unified approach based on the expenditure of efforts during the testing
process. Besides, debugging process is considered imperfect as new faults may enter
the software during each fault removal. The developed model further considers that
the developer’s rate of defect identification changes with a software release. Thus, the
software time-to-market acts as a change-point for the failure observation phenomenon. It
is asserted that the accuracy of a software reliability estimation improves by implementing

166 Vivek Kumar, et al. / Optimal Decisions on Software Release

the concept of change-point. The main aim of the paper is to evaluate the optimal release
time and testing termination time based on two attributes, particularly, reliability, and
cost. A multi-attribute utility theory (MAUT) is applied to find a trade-off between
the two conflicting attributes. Finally, a numerical example is presented by using the
historical fault count data. The behavior of two decision variables is measured and
compared with the existing release time strategy.

Keywords: Change-point, Field-testing Phase, Imperfect Debugging, Multi-attribute

Utility Theory, Optimal Software Scheduling, Software Reliability Assessment, Testing

Effort, Testing Duration.

MSC: 90B25, 90C90, 68N30.

1. INTRODUCTION

Reliability of software systems has become the most important customer-
centric feature of software quality. Therefore, it is of great concern for software
vendors to develop effectual and reliable software products. Rigorous testing is
required to debug the underlying faults of the software products before releasing
them for commercial purposes [15]. Based on the fault count data retrieved from
the testing phase, the software reliability can be anticipated using suitable Soft-
ware Reliability Growth Models (SRGMs) [27]. To assess the reliability of software
products and to determine the impact of the testing process, numerous SRGMs
have been developed by academicians and analysts in the last 40 years. In gen-
eral, reliability growth models depend on the assumptions of Non-homogeneous
Poisson Process (NHPP). In NHPP based models, the amount of defects identi-
fied, isolated, and removed from the software at any time instance is measured
using mean value function [11]. Different SRGMs have been proposed based on
different suppositions. The software reliability problem was first investigated by
Goel and Okumoto [3], who proposed an analytical model with an assumption
that a failure observation in the software system follows an exponential curve with
the perfect debugging process. Later on, different SRGMs were developed on the
assumption of perfect debugging. For instance, mathematical models provided by
authors [34, 23, 8, 17, 22, 13] assumed that all the discovered faults would be cor-
rected without causing any new fault generation. Nevertheless, this presumption
is impractical in real-world scenarios. Therefore, a great number of studies have
been suggested to quantify the reliability of a software system by assimilating dif-
ferent phenomena such as testing efforts, imperfect debugging, error generation,
and change-point [28, 4, 35, 9, 31, 18, 12].

NHPP models have also been thoroughly applied in the cost-control investi-
gation, examination of software time-to-market, and resource allocation problems
[15]. In software reliability literature, the evaluation of software release and testing
termination time has been extensively studied and a variety of analytical models
and release time policies have been suggested [32]. The persistent testing of the
software for a longer duration may hinder the timely delivery of the software sys-
tem. In addition, it will swiftly lead to high development costs. At the same

Vivek Kumar, et al. / Optimal Decisions on Software Release 167

time, the shorter testing with an inadequate debugging process will result in the
buyer’s disappointment that may adversely affect the growth of software products
and goodwill of the software firm. Thus, the software testing duration and release
time decisions are intricate issues, wherein it is necessary to keep balance between
reliability, development cost, and time-to-market.

Consequently, over many past decades, the study on optimal release policy has
earned enormous attention from the researchers. Okumoto and Goel [25] developed
a basic optimal release policy that minimizes the total software development cost.
Yamada and Osaki [33], soon after, proposed the constrained cost minimization
problem to determine the optimal software release policy. Several other studies
on software time-to-market have been carried out in which testing stop time and
release time coincides [7, 5, 10, 20, 19, 21, 2]. There has been another stream of
research, which demonstrates that the testing duration and software release time
should be treated as two distinct decision variables [1, 6, 13, 14, 30]. Based on
these studies, software developers are advised to make the software available for
commercial use early and carry on the testing process in the operational phase for
some time. This is recommended because the companies could reduce the revenue
loss that would have otherwise occur due to the market being captured by the
competitors. Additionally, prolonged testing will support software engineers to
achieve the desired level of software reliability.

The proposed study considers the software release time as change point for
developers defect identification rate. It has been observed that the failure occur-
rence of the software is often different in the field environment as compared to the
testing environment. Moreover, software vendors attempt to debug the defects as
early as possible to avoid software breakdown at the user end. Because of this, the
developers change the testing strategies to modify the debugging process thereby,
altering the fault detection rate. Thus, the release time is treated as a change-
point (CP). The time instance where defect identification rate alters due to factors
such as a change in the testing environment, resource allocation, testing strategy
and integration testing is known as change-point [26].

1.1. Summary of Contribution

The key contributions of the present study in the field of software release
management are:

� The present study develops a plausible software reliability model by incor-
porating different testing strategies before and after the software release.

� The paper proposes a new joint optimization policy for software time-to-
market and testing stop time by simultaneously incorporating the testing
effort, imperfect debugging, and change-point in the failure observation pro-
cess.

� The proposed methodology imparts a comprehensive analysis of software
release time based on cost and reliability attributes.

168 Vivek Kumar, et al. / Optimal Decisions on Software Release

� The relevancy of the proposed research in real-world scenarios is numerically
illustrated by using the historical failure count data. The findings yield that
the new software release time policy gives better utility function than the
conventional release time approach.

1.2. Problem Definition

This paper examines the optimal date for software release under the influence of
testing effort, change-point, and imperfect debugging. A constrained optimization
problem is framed to determine the optimal release time strategy. The failure
occurrence behavior is represented using the software reliability growth model
with an assumption that the release time acts as a change-point. The optimal
decisions on software time-to-market and testing stop time are evaluated by using
multi-attribute utility theory (MAUT). Specifically, two crucial decision variables,
reliability, and cost function are chosen simultaneously to infer the optimal results.
Besides, the proposed release time policy (PRT) is compared to the conventional
release time policy (CRT). A case study is also conducted to numerically compare
the proposed methodology with the existing testing and release time polices.

2. MODEL DEVELOPMENT

In this section, a generalized SRGM is developed using a unified approach. In
the proposed FT release time policy, the fault detection process is modeled by
segregating the software lifecycle in three phases. In the first phase, pre-release or
in-house testing phase, the testers thoroughly detect and correct the faults using
the efforts allocated for the testing process. It is worth noting that the present
study assume that the debugging process is imperfect, i.e., there is a probability
that detected faults may not be completely removed from the system. Moreover,
there is a chance of introduction of new faults during the debugging process. In
the second phase, post-release or field-testing phase, both software producers and
customers identify the latent defects. However, the detected faults are fixed by the
testers alone who then send patches to end-users for updating the software product.
The developers terminate the testing process when the desired level of reliability
is achieved. Therefore, in the third phase, post-testing phase, the task of fault
detection is moved to the users. In the conventional release time (CRT) policy,
the software lifecycle involves two phases: testing phase, and operational phase.
The pictorial representations of these phases of the proposed and conventional
release time policies are provided in Figure 1 and 2 respectively.

2.1. Assumptions

The proposed software growth model is based on the following assumptions.

1. Non-homogenous Poisson Process (NHPP) is applied to exemplify the de-
bugging process.

2. There is no time lag between the fault detection and correction process.

Vivek Kumar, et al. / Optimal Decisions on Software Release 169

Figure 1: Three phases of fault observation phenomenon for proposed release time (PRT) policy

Figure 2: Two phases of fault observation phenomenon for conventional release time (CRT)
policy

3. Each fault in the software system is independent and identically distributed
throughout the software lifecycle.

4. The total number of faults lying dormant in the system is finite but may
increase due to the imperfect debugging.

5. The introduction rate of faults is dependent on the latent faults and new
faults are produced with the rate α1

6. During the debugging process, there occur two possibility:

� Fault is corrected completely with probability p1

� Fault is not removed with probability (1–p1) and the total fault content
remains unchanged.

7. After the software release, both testers and customers meticulously discover
failures in the system. Beyond the testing process, the identification of faults
shifts completely to the users.

8. On failure observation, users instantly notify the software manufacturer who
then debug the fault and send a patch to their customers for system update.

9. The expenditure on software patch is assumed negligible.

2.2. Generalized SRGM under proposed release time (PRT) policy

2.2.1. In-house testing or pre-release testing phase [0,τ)

Prior the release, software engineers ensure that the software goes through
rigorous testing process to deliver a reliable software product to its customers.
Based on the assumptions (1)-(6), the differential equation representing the failure

170 Vivek Kumar, et al. / Optimal Decisions on Software Release

observation phenomenon incorporating imperfect debugging is given as:

dm1t(W (t))

dW (t)
= p1

f1t(W (t))

1− F1t(W (t))
(a+ α1m1t(W (t))−m1t(W (t))) (1)

where f1t(t)
1−F1t(t)

describes the hazard rate function, p1 is the probability of per-

fect debugging, α1 is the rate of generation of new faults, and W (t) is the cu-
mulative amount of testing efforts consumed over time t. The analytical solution
representing the expected number of defects detecting during pre-release testing
phase is obtained by solving equation (1) under the condition that at t = 0,
W (t) = 0, m1t(W (t)) = 0, i.e.

m1t(W (t)) =
a

1− α1

[
1− (1− F1t(W (t)))

p1(1−α1)
]

(2)

Moreover, if the distribution function follows an exponential distribution, then the
following solution is obtained:

m1t(W (t)) =
a

1− α1

(
1− e−b1p1(1−α1)W (t)

)
(3)

where b1 is the fault detection rate parameter of exponential distribution function.
Equation (3) expresses the number of defects identified by the testing team in the
first phase.

2.2.2. Phase 2: Field-testing or post-release testing phase [τ , T)

During this phase, when softwrae system is in the field-environment, both
developers and users attempt to identify defects from the software system. Never-
theless, testers are repsonsible for correcting the identified defects. It is assumed
(assumption 7) that the a fixed proportion, λ of latent faults left after the in-house
testing are identified by the tetsers while the 1 − λ proportion will be carefully
identified by the customers. Now, the software is in the operating environment,
the testing team alters their testing strategy to recify faults as soon as possible.
Thus, in the present study, the release time is referred to as a change-point because
the fault detection rate is modified at time-point τ .

Now, the differential equation representing defects identified by the software
manufacturer at any instant in the seond phase is given as:

dm2t(W (t−τ))
dW (t)

=p1
f2t(W (t))

1−F2t(W (t))

(λa(1−F1t(W (t)))p1(1−α1)+α2m2t(W (t−τ))−m2t(W (t−τ)))
(4)

In equation (4), f2t(W (t))
1−F2t(W (t)) represents the hazard rate function after change-

point τ and α2 denotes the rate of error generation for this phase. On further
solving the above equation, using the condition that at t = τ , m2t(W (t− τ)) = 0 ,
following closed-form solution is achieved:

Vivek Kumar, et al. / Optimal Decisions on Software Release 171

m2t(W (t−τ)) = λ
a

(1− α2)
1− F1t(W (τ)

p1(1−α1)[1− (
1− F2t(W (t))

1− F2t(W (τ))
)
p1(1−α2)

]

(5)

Equation (5) represents the number of defects identified by the software manufac-
turer in the post-release testing phase. Furthermore, when exponential distribu-
tion is used to represent the failure observation phenomenon, then the analytical
solution becomes:

m2t(W (t− τ)) = λ
a

(1− α2)
e−b1p1(1−α1)W (τ)1− e−b2p1(1−α2)(W (t)−W (τ))) (6)

where b2 is the rate parameter of the exponential distribution function after
change-point τ .

Moreover, on executing instructions on the software, users may encounter fail-
ure because of the latent faults. Upon system breakdown, they may immediately
notify to the developers. Consequently, the instantaneous defect identification by
customers at any time t is described as:

dm2u(W (t−τ))
dW (t−τ) =p1

fu(W (t−τ))
1−Fu(W (t−τ))

((1−λ)a(1−F1t(W (t)))p1(1−α1)+
α2m2u(W (t−τ))−m2u(W (t−τ)))

(7)

The closed-form solution of the above differential equation (7) can be obtained
by using the initial condition that at t = τ , m2u(W (t− τ)) = 0 , i.e.

m2u(W (t− τ)) = (1− λ)
a

(1− α2)
(1− F1t(W (τ))

p1(1−α1)[
1− (1− Fu(W (t− τ)))

p1(1−α2)
]

(8)

Furthermore, when exponential distribution is used to represent the failure obser-
vation phenomenon, then the solution is expressed as:

m2u(W (t− τ)) = (1− λ)
a

(1− α2)
e−b1p1(1−α1)W (τ)

(
1− e−b3p1(1−α2)(W (t−τ))

)
(9)

where b3 is the combined rate of users’defect identification of this testing phase.

2.2.3. Phase 3: Post-testing phase [T , Tlc]

After the termination of testing process at time T , the task of detecting the
remaining faults shifts entirely to the users (assumption 8). Therefore, during this
phase, users inform the developers about the defects identified, who upon the noti-
fication make an effort to correct it instantly. However, the fault detection rate of

172 Vivek Kumar, et al. / Optimal Decisions on Software Release

users remains the same as that in the previous phase. Accordingly, the differential
equation for the failure observation phenomena during this phase becomes:

dm3u(W (t−T))

dW (t−τ) =p1
fu(W (t−τ))

1−Fu(W (t−τ))Za+α2m3u(W (t−T))−m3u(W (t−T)) (10)

where

Za=a(1−F1t(W (τ)))p1(1−α1)

1−λ
[
1−

(
1−F2t(W (t))

1−F2t(W (τ))

)p1(1−α2)
]

−(1−λ)[1−(1−Fu(W (t−τ)))p1(1−α2)]
Using the initial condition, t = τ , m2u(W (t− T)) = 0 , above equation can be

solved to obtain the following expression:

m3u(W (t− T)) =
Za

(1− α2)

[
1−

(
1− Fu(W (t− τ))

1− Fu(W (T − τ))

)p1(1−α2)
]

(11)

Now, when exponential distribution is used to represent the failure observation
phenomenon, then the analytical solution becomes:

m3u(W (t− T)) =
a

(1− α2)
e−b1p1(1−α1)W (τ)(

1− λ
(
1− e−b2p1(1−α2)(W (T)−W (τ))

)
+(1− λ)

(
1− e−b3p1(1−α2)(W (T−τ))))(

1− e−b3p1(1−α2)(W (t−T))
)

(12)

3. GENERALIZED SRGM UNDER CONVENTIONAL RELEASE
TIME (CRT) POLICY

In case of conventional release time policy followed by previous authors [15, 6],
the testing duration coincides with the software time-to-market. Therefore, the
software lifecycle consists of two phases: testing phase, and operational phase. In
the first phase, only testers execute the failure observation process while in the
operational phase, detection of the faults is the responsibility of users. Therefore,
the expected number of defects observed by the testing team in period [0, τ) is
given as:

m1t(W (t)) =
a

1− α1

[
1− (1− F1t(W (t)))

p1(1−α1)
]

(13)

Furthermore, in the second phase, [τ, Tlc] defects unidentified by the testers will
be detected only by the users. Thus, the number of defects identified in operation
phase is given as:

m2u(W (t− τ)) =
a

(1− α2)
(1− F1t(W (τ))

p1(1−α1)[
1− (1− Fu(W (t− τ)))

p1(1−α2)
]

(14)

Vivek Kumar, et al. / Optimal Decisions on Software Release 173

4. MODELING TESTING-EFFORT FUNCTION

In the proposed modelling framework, the fault debugging process is governed
by the testing resource consumption. For the present study, the consumption
pattern of testing resources is considered to follow an exponential distribution
function. The differential equation representing the consumption rate of testing
resources during the testing process is give as:

dW (t)

dt
= v

(
W̄ −W (t)

)
(15)

where v denotes the rate with which testing-efforts are expended and W̄ represents
the total testing resources at hand for debugging process. On further solving the
above equation using the boundary condition, W (0) = 0 following closed-form
solution can be obtained:

W (t) = W̄
(
1− e−vt

)
(16)

Equation (16) represents the total expenditure of testing resources for fault de-
bugging process over time t.

5. COST FUNCTION FOR TWO RELEASE POLICIES

In the present section, the major cost functions that have the most influence on
the two crucial decision variables, software time-to-market and testing duration,
are described.

a) Testing cost, C1W (T): the cost involved with testing activities such as
planning, execution, test case generation, and analysis is known as testing cost.
In software reliability literature, testing cost is considered directly dependent on
the amount of efforts expended during the testing period.

b) Market opportunity cost, C2τ
2: the cost involved with the loss incurred

by the firm due to the delay in the market entry of their software product. Mar-
ket opportunity cost is an important factor that reflects the manipulation in the
market by competitor firms. In past, it has been established that this cost is a
quadratic function of the software release time.

c) Cost of debugging during in-house testing phase, C3m1t(W (τ)): the
cost linked to defect identification and correction during the in-house testing phase
is referred to as debugging cost. The cost is directly dependent on the number of
defects identified in this phase.

d) Cost of debugging during field-testing phase, C4m2t(W (T − τ)) +
C5m2u(W (T − τ)): the cost due to fault correction post software release is the
debugging cost in the field-testing phase. In the field environment, various unan-
ticipated cost components such as liability costs, user disapproval cost, revenue
losses, and indirect costs due to damaged reputation arise. All the components
substantially increase the debugging cost per fault corrected post software release.

174 Vivek Kumar, et al. / Optimal Decisions on Software Release

e) Cost of debugging during post-testing phase, C6m3u(W (Tlc−T)): Af-
ter the testing terminates at time T , only users identify the faults and immediately
report the failure to the developers.

Under Proposed Release Time (PRT) Policy
The sum total of all the cost functions considering the field-testing framework

is given as:

C(τ, T) = C1W (T) + C2τ
2 + C3m1t(W (τ)) + C4m2t(W (T − τ))

+ C5m2u(W (T − τ)) + C6m3u(W (Tlc − T)) (17)

Under Conventional Release Time (CRT) Policy

Under traditional release time strategy, the cost function is structured as:

C(τ) = C1W (τ) + C2τ
2 + C3m1t(W (τ)) + C6m2u(W (Tlc − τ)) (18)

6. OPTIMAL RELEASE TIME DECISIONS USING MAUT

Multi-attribute utility theory is a well-known approach to solve the optimiza-
tion problem involving multiple factors with contradictory objective functions and
ensure the best solution [16]. In software reliability, the MAUT has been increas-
ingly applied to evaluate the tradeoff between the conflicting attributes for ana-
lyzing the optimal software release policies [30]. In the present study, two critical
attributes, cost and reliability functions, are identified for determining the optimal
solution. MAUT describes tradeoff between these two attributes by modeling the
utility function of each attribute. This approach comprises of following four steps:

6.1. Selection of suitable attributes

The release time strategy should be computed based on the most decisive at-
tributes. These factors must be measurable and with a practical applicability. The
foremost aim of software producers is to deliver both reliable and safe software sys-
tem to their users. Correspondingly, the reliability is the necessary characteristic
that affects optimal decisions involved with software time-to-market and testing
duration. Thus, the first attribute included in the proposed optimization problem
is:

R(x|t) = e−[m(W (t+x))−m(W (t))] (19)

where R(x|0) = e−m(W (x)) and R(x|∞) = 1.

Under proposed release time (PFT) policy:

Maximize R(x|τ, T) = e−[m(W (τ+x1))−m(W (τ))]−[m(W (T+x2))−m(W (T))]

(20)

where x1 and x2 denotes the small time durations.

Vivek Kumar, et al. / Optimal Decisions on Software Release 175

Under conventional release time (NFT) policy:

Maximize R(x|τ) = e−[m(W (τ+x1))−m(W (τ))] (21)

The second attribute considered for the proposed optimization problem is the
cost function. The investigation of cost budget is necessary for the software pro-
ducers to develop reliable software at minimal cost. Therefore, the cost function
for the proposed problem is given as:

Under proposed release time (PFT) policy:

Minimize C(τ, T) =
C(W (τ, T))

Cb
(22)

Under conventional release time (NFT) policy:

Minimize C(τ) =
C(W (τ))

Cb
(23)

6.2. Elicitation of SAUF for each attribute

Utility functions are applied to represent the goal of each attribute. Single
attribute utility theory (SAUF) expresses the satisfaction level of management
towards each attribute. For the proposed framework, the utility function of two
attributes, namely, reliability and cost function, is:

u(C) = lc + ucC and u(R) = lr +mrR (24)

The boundary values for the utility function are: u(ybest) = 1 and u(yworst) = 0
value. The bounds are calculated based on the management and decision makers’
aspirations: a) For the reliability function, at least 60% of the defects should
be identified and utmost 100% must be identified; b) For the cost function, the
minimum budget prerequisite is 90% and the maximum requirement is 100%.
Therefore, the bounds for these attributes are: Cworst = 0.9, Cbest = 1, Rworst =
0.6 and Rbest = 1. Under these boundary conditions, the SAUF for the two
attributes takes the following functional form:

u(C) = 10C − 9 and u(R) = 2.5R− 1.5 (25)

6.3. Estimation of weight parameters

For the present study, the weight has been allotted on the managements’ judg-
ments. The value of the weight parameter lies between zero and one, where the
value closer to 1 denotes the higher significance. Moreover, the sum of weight
parameters should be equal to 1, i.e., ωr + ωc = 1. For the present problem,
weight given by the software development management to the reliability attribute
is ωr = 0.6, and consequently, weight assigned to cost attribute is ωc = 0.4.

176 Vivek Kumar, et al. / Optimal Decisions on Software Release

6.4. Formulation of MAUF

Finally, the Multi-attribute Utility Function (MAUF) is developed by arith-
metically summing all the single utility functions (SAUF), using the weight pa-
rameters. Therefore, the MAUF (u) for the proposed framework is expressed as:

Maximize u(R,C) = ωrU(R)− ωCU(C) (26)

where ωr+ωc = 1; u(R) and u(C) represent the single utility functions for reliabil-
ity and cost element, respectively. In the present study, the focus of the software
producers is to maximize the overall utility function. Therefore, the utility of the
cost attribute is multiplied by negative sign to synchronize it with the reliability
attribute and to obtain the maximum value of the MAUF. After substituting the
values from previous steps, the MAUF function can be re-written as:

Maximize u(R,C) = 0.6× (2.5R− 1.5)− 0.4× (10C − 9) (27)

where ωR + ωc = 1 and C(τ, T)
Cb

≤ 1

The solution of the above-formulated utility function will yield the optimal
values of software release time and testing stop time.

7. NUMERICAL EXAMPLE

In this section, the practical applicability of the proposed problem is illus-
trated through an example by using the historical fault discovery data. The data
set used for the numerical illustration is the fault count data of Alcatel/Lucent
Technologies, a French global telecommunications equipment company. The data
is from the test of stability and was reported by Okumoto [24]. During the test-
ing period of 56 weeks, 124 faults were identified with total testing effort con-
sumption of 6316.5 CPU hours. Parameters of the model are estimated using
the non-linear least regression. The estimated results of the model parameters
for the pre-release testing period are: W̄ = 76404.6, v= 0.001568, a = 167.32,
b1 = 0.000329, α1 = 0.06407, and p1 = 0.7285. The goodness-of-fit measures re-
sults are: RMSE = 6.7618 and R2 = 0.9722. Moreover, the tester’s rate in the
second phase becomes b2= 0.0004935 (50% rise after the change-point) and the
user’s fault detection rate is taken as b3 = 0.0001974 (60% of tester’s detection
rate in the pre-release phase). Also, it is considered the rate introduction of faults
before and after remains the same, i.e., α1 = α2.. The remaining parameter values
used for the optimization problem are:

W̄ = 76404.6, x1 = 2, x2 = 2, C1 = 20, C2 = $16, C3 = $60, C4 = $80,
C5 = $140, C6 = $2, 000, Cb = $450, 000, Tlc = 300 weeks, λ = 0.6

The formulated MAUF problem is solved using the parameter values to obatin
the optimal results. The compuatational software, MAPLE is utilized for solving

Vivek Kumar, et al. / Optimal Decisions on Software Release 177

the maximization problem for both PRT (proposed release time policy) and CRT
(existing release time policy). The optimal result for release time and testing
stop time under two release time policy is given in Table 1. From the results,
it can be clearly inferred that the release time policy with field testing yields
better utility for the software vendors. Additionally, Figures 3 (a) and (b) provide
the concavity plot of the utility functions. In Table 2, a phase-wise description
of defects identified is listed. Out of 177 faults estimated to be present in the
software, 73% of faults are successfully removed before testing termination at the
47th week. The remaining faults are expected to be reported by the customers in
the post-testing phase.

Release Policies U(τ∗, T ∗) τ∗(in weeks) T ∗(in weeks)
Field-testing (FT) policy 0.759 9.584 47.182

No field-testing (NFT) policy 0.727 48.362 -

Table 1: Optimal Results

Figure 3: Utility function plot under a) PRT b) CRT policy

Software Lifecycle Phases Mean Value Function Number of detected faults
(Approx.)

In-house testing phase m1t(W (t)) 40 (by testers)
Field-testing phase m2t(W (t− τ)) 64 (by testers)

m2u(W (t− τ)) 25 (reported by users)
Post-testing phase m3u(W (t− T)) 48 (reported by users)

Table 2: Stage wise description of failure observation under proposed release time policy

178 Vivek Kumar, et al. / Optimal Decisions on Software Release

8. CONCLUDING REMARKS

In the present study, software release time strategy is evaluated by following a
strategy of releasing the software early on and continuing the testing for an extra
time in the user environment to avoid high market opportunity cost. To reflect on
the current trends in the software industry, the present study discusses an imper-
fect debugging based SRGM for the software testing process, which is formulated
as a continuous function of testing effort consumption. This paper also deals with
the realistic situation of altering the detection rate of the testers after the software
release time. The software performs differently in the field environment there-
fore, the company needs to adopt different testing strategies for the operational
phase. To avoid software failure at the user environment and unforeseen costs
components, testers intentionally intensify the testing process to debug the faults
as soon as possible. The main aim of the proposed study is to assess the optimal
time to release software, terminate testing process that maximizes the reliability
function, and simultaneously minimize the cost components. The findings of the
present study show the robustness and practicality of the proposed framework.
The current research also offers new insights to project managers. The proposed
release time policy assists project managers in making critical decisions under dif-
ferent realistic environments. By pursuing the policy of early software release,
managers will be able to have a market share. Also, by protracted testing, the
chance of system breakdown in the operational environment minimizes and will
support developers to offer extremely reliable software, which enhances the clients’
satisfaction. Furthermore, the developed study is worthy of future research. In
the current paper, the optimal decisions are based on two critical factors, namely,
reliability and cost. Therefore, in the consecutive research, other factors such as
risk may also be considered in the optimization problem. Furthermore, the devel-
oped framework may be extended into a multi-release framework to examine the
optimal frequency of software upgrades.

REFERENCES

[1] Arora, A., Caulkins, J. P., Telang, R., ”Research note—Sell first, fix later: Impact of
patching on software quality”, Management Science, 52 (3) (2006) 465–471.

[2] Cao, P., Yang, K., and Liu, K., ”Optimal selection and release problem in software testing
process: a continuous time stochastic control approach”, European Journal of Operational
Research, 285 (1) (2019) 211-222.

[3] Goel, A. L., and Okumoto, K., ”Time-dependent error-detection rate model for software
reliability and other performance measures”, IEEE transactions on Reliability, 28 (3) (1979)
206-211.

[4] Huang, C. Y., ”Cost-reliability-optimal release policy for software reliability models incorpo-
rating improvements in testing efficiency”, Journal of Systems and Software, 77 (2) (2005)
139-155.

[5] Huang, C. Y., and Lyu, M. R., ”Optimal release time for software systems considering cost,
testing-effort, and test efficiency”, IEEE transactions on Reliability, 54 (4) (2005) 583-591.

[6] Jiang, Z., Sarkar, S., and Jacob, V. S., ”Postrelease testing and software release policy for
enterprise-level systems”, Information Systems Research, 23 (3-part-1), (2012) 635-657.

Vivek Kumar, et al. / Optimal Decisions on Software Release 179

[7] Kapur, P. K., and Garg, R. B., ”Optimal release policies for software systems with testing
effort”, International journal of systems science, 22 (9) (1991) 1563-1571.

[8] Kapur, P. K., and Garg, R. B., ”A software reliability growth model for an error-removal
phenomenon”, Software Engineering Journal, 7 (4) (1992) 291-294.

[9] Kapur, P. K., Goswami, D. N., Bardhan, A., and Singh, O., ”Flexible software reliabil-
ity growth model with testing effort dependent learning process”, Applied Mathematical
Modelling, 32 (7) (2008) 1298-1307.

[10] Kapur, P. K., Khatri, S. K., Tickoo, A., and Shatnawi, O., ”Release time determination de-
pending on number of test runs using multi attribute utility theory”, International Journal
of System Assurance Engineering and Management, 5 (2) (2014) 186-194.

[11] Kapur, P. K., Kumar, S., and Garg, R. B., Contributions to hardware and software relia-
bility, (Vol. 3), World Scientific Publishing Company, Singapore (1999).

[12] Kapur, P. K., Panwar, S., Kumar, V., and Singh, O., ”Entropy-Based Two-Dimensional
Software Reliability Growth Modeling for Open-Source Software Incorporating Change-
Point”, International Journal of Reliability, Quality and Safety Engineering, 27 (05) (2020)
2040009.

[13] Kapur, P. K., Panwar, S., Singh, O., and Kumar, V., ”Joint optimization of software time-
to-market and testing duration using multi-attribute utility theory”, Annals of Operations
Research, (2019a).https://doi.org/10.1007/s10479-019-03483-w.

[14] Kapur, P. K., Panwar, S., Singh, O., and Kumar, V., ”Joint Release and Testing Stop
Time Policy with Testing-Effort and Change Poin”, In Risk Based Technologies, Springer,
Singapore (2019b) 209-222.

[15] Kapur, P. K., Pham, H., Gupta, A., and Jha, P. C., Software reliability assessment with
OR applications, London, UK, Springer, 2011.

[16] Keeney, R. L., ”Utility independence and preferences for multi attributed consequences”,
Operations Research, 19 (4) (1971) 875-893.

[17] Kumar, Vijay, Paridhi Mathur, Ramita Sahni, and Mohit Anand, ”Two-dimensional multi-
release software reliability modeling for fault detection and fault correction processes”, In-
ternational Journal of Reliability, Quality and Safety Engineering, 23 (03) (2016a) 1640002.

[18] Kumar, Vijay, Ramita Sahni, and Shrivastava, A. K., ”Two-dimensional multi-release soft-
ware modelling with testing effort, time and two types of imperfect debugging”, Interna-
tional Journal of Reliability and Safety, 10 (4) (2016b) 368-388.

[19] Kumar, Vijay, V. B. Singh, Ashish Dhamija, and Shreyas Srivastav, ”Cost-reliability-
optimal release time of software with patching considered”, International Journal of Reli-
ability, Quality and Safety Engineering, 25 (04) (2018) 1850018.

[20] Li, Q., and Pham, H., ”NHPP software reliability model considering the uncertainty of oper-
ating environments with imperfect debugging and testing coverage”, Applied Mathematical
Modelling, 51 (2017) 68-85.

[21] Minamino, Y., Sakaguchi, S., Inoue, S., and Yamada, S., ”Two-Dimensional NHPP Models
Based on Several Testing-Time Functions and Their Applications”, International Journal
of Reliability, Quality and Safety Engineering, 26 (04) (2019) 1950018.

[22] Nagaraju, V., Fiondella, L., and Wandji, T., ”A heterogeneous single changepoint software
reliability growth model framework”, Software Testing, Verification and Reliability, 29 (8)
(2019) e1717.

[23] Ohba, M., and Yamada, S., ”S-shaped software reliability growth models”, in: International
Colloquium on Reliability and Maintainability, 4th, Tregastel, France, (1984) (430-436).

[24] Okumoto, K., Customer-perceived software reliability: measurement, prediction, ap-
plication, keynote talk at the 22nd IEEE international symposium on software re-
liability engineering (ISSRE 2011), Tokyo, Japan 2011, downloadable from http :
//2011.issre.net/sites/default/− files/okumotodata.pdf .

[25] Okumoto, K., and Goel, A. L., ”Optimum release time for software systems based on
reliability and cost criteria”, Journal of Systems and Software, 1 (4) (1980) 315-318.

[26] Panwar, S., Kapur, P. K., and Singh, O., ”Modeling technological substitution by incorpo-
rating dynamic adoption rate”, International Journal of Innovation and Technology Man-
agement, 16 (01) (2019) 1950010.

[27] Peng, R., Li, Y. F., Zhang, J. G., and Li, X., ”A risk-reduction approach for optimal software

180 Vivek Kumar, et al. / Optimal Decisions on Software Release

release time determination with the delay incurred cost”, International Journal of Systems
Science, 46 (9) (2015) 1628-1637.

[28] Pham, H., Nordmann, L., and Zhang, Z., ”A general imperfect-software-debugging model
with S-shaped fault-detection rate”, IEEE Transactions on reliability, 48 (2) (1999) 169-175.

[29] SAS, S. STAT User guide, Version 9.1.2. SAS Institute Inc, Cary, NC, USA, 2004.
[30] Singh, O., Panwar, S., Kapur, P. K., ”Determining software time-to-market and testing

stop time when release time is a change-point”, International Journal of Mathematical,
Engineering and Management Sciences, 5 (2) (2020) 208-224.

[31] Wang, J., Wu, Z., Shu, Y., and Zhang, Z., ”An imperfect software debugging model consid-
ering log-logistic distribution fault content function” Journal of Systems and Software, 100
(2015) 167-181.

[32] Yamada, S., Software reliability modeling: fundamentals and applications, (Vol. 5) Tokyo:
Springer, 2014.

[33] Yamada, S., and Osaki, S., ”Optimal software release policies with simultaneous cost and
reliability requirements”, European Journal of Operational Research, 31 (1) (1987) 46-51.

[34] Yamada, S., Ohba, M., and Osaki, S., ”S-shaped reliability growth modeling for software
error detection”, IEEE Transactions on reliability, 32 (5) (1983) 475-484.

[35] Zhao, J., Liu, H. W., Cui, G., and Yang, X. Z., ”Software reliability growth model with
change-point and environmental function”, Journal of Systems and Software, 79 (11) (2006)
1578-1587.

[36] Zhao, M., ”Statistical reliability change-point estimation models”, in: Handbook of Relia-
bility Engineering, Springer, London, 2003, 157-163.

