ON STRONGLY REGULAR GRAPHS WITH $m_{2}=q m_{3}$ AND $m_{3}=q m_{2}$ FOR $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$
 Mirko LEPOVIĆ
 Tihomira Vuksanovića 32, 34000 Kragujevac, Serbia
 lepovic@kg.ac.rs

Received: April 2020 / Accepted: September 2020

Abstract

We say that a regular graph G of order n and degree $r \geq 1$ (which is not the complete graph) is strongly regular if there exist non-negative integers τ and θ such that $\left|S_{i} \cap S_{j}\right|=\tau$ for any two adjacent vertices i and j, and $\left|S_{i} \cap S_{j}\right|=\theta$ for any two distinct non-adjacent vertices i and j, where S_{k} denotes the neighborhood of the vertex k. Let $\lambda_{1}=r, \lambda_{2}$ and λ_{3} be the distinct eigenvalues of a connected strongly regular graph. Let $m_{1}=1, m_{2}$ and m_{3} denote the multiplicity of r, λ_{2} and λ_{3}, respectively. We here describe the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$.

Keywords: Strongly Regular Graph, Conference Graph, Integral Graph.
MSC: 05C50.

1. INTRODUCTION

Let G be a simple graph of order n with vertex set $V(G)=\{1,2, \ldots, n\}$. The spectrum of G consists of the eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ of its (0,1) adjacency matrix A and is denoted by $\sigma(G)$. We say that a regular graph G of order n and degree $r \geq 1$ (which is not the complete graph K_{n}) is strongly regular if there exist non-negative integers τ and θ such that $\left|S_{i} \cap S_{j}\right|=\tau$ for any two adjacent vertices i and j, and $\left|S_{i} \cap S_{j}\right|=\theta$ for any two distinct non-adjacent vertices i and j, where $S_{k} \subseteq V(G)$ denotes the neighborhood of the vertex k. We know that a regular connected graph G is strongly regular if and only if it has exactly three distinct eigenvalues [1] (see also [2]). Let $\lambda_{1}=r, \lambda_{2}$ and λ_{3} denote the distinct eigenvalues of a connected strongly regular graph G. Let $m_{1}=1, m_{2}$ and m_{3} denote the multiplicity of r, λ_{2} and λ_{3}. Further, let $\bar{r}=(n-1)-r, \bar{\lambda}_{2}=-\lambda_{3}-1$ and $\bar{\lambda}_{3}=-\lambda_{2}-1$ denote the distinct eigenvalues of the strongly regular graph \bar{G},

374 M. Lepović / On strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$
where \bar{G} denotes the complement of G. Then $\bar{\tau}=n-2 r-2+\theta$ and $\bar{\theta}=n-2 r+\tau$ where $\bar{\tau}=\tau(\bar{G})$ and $\bar{\theta}=\theta(\bar{G})$. Next, according to [1] and [2] we have the following two remarks.

Remark 1. (i) if G is a disconnected strongly regular graph of degree r then $G=$ $m K_{r+1}$, where $m H$ denotes the m-fold union of the graph H and (ii) G is a disconnected strongly regular graph if and only if $\theta=0$.

Remark 2. (i) a strongly regular graph G of order $n=4 k+1$ and degree $r=2 k$ with $\tau=k-1$ and $\theta=k$ is called a conference graph; (ii) a strongly regular graph is a conference graph if and only if $m_{2}=m_{3}$ and (iii) if $m_{2} \neq m_{3}$ then G is an integral graph.

We have recently started to investigate strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$, where q is a positive integer [3]. In the same work we have described the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=2,3,4$. Besides, (i) we have described in [4] the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=5,6,7,8$; (ii) we have described in [5] the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=9,10$ and (iii) we have described in [6] the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=11,12$. In particular, we have recently started to investigate strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$, where q is a positive rational number [7]. In the same work we have described the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=\frac{3}{2}, \frac{4}{3}, \frac{5}{2}, \frac{5}{3}, \frac{5}{4}, \frac{6}{5}$. We now proceed to describe the parameters of strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$, as follows. First,

Theorem 3 (Lepović [7]). Let G be a connected strongly regular graph of order n and degree r with $m_{2}=a p$ and $m_{3}=b p$, where $a, b, p \in \mathbb{N}$ so that $(a, b)=1$ and $a>b$. Then:
$\left(1^{0}\right) n=(a+b) p+1 ;$
$\left(2^{0}\right) r=p t ;$
$\left(3^{0}\right) \tau=\left(p t-\frac{a k^{2}+k t}{b}\right)-\frac{(a-b) k+t}{b} ;$
$\left(4^{0}\right) \theta=p t-\frac{a k^{2}+k t}{b} ;$
$\left(5^{0}\right) \lambda_{2}=k ;$

[^0]$\left(6^{0}\right) \lambda_{3}=-\frac{a k+t}{b} ;$
$\left(7^{0}\right) \delta=\frac{(a+b) k+t}{b} ;$
$\left(8^{0}\right)(b p+1) t^{2}-b((a+b) p+1) t+a(a+b) k^{2}+2 a k t=0$,
for $k \in \mathbb{N}$ and $t=1,2, \ldots, a+b-1$, where $\delta=\lambda_{2}-\lambda_{3}$.
Theorem 4 (Lepović [7]). Let G be a connected strongly regular graph of order n and degree r with $m_{2}=b p$ and $m_{3}=a p$, where $a, b, p \in \mathbb{N}$ so that $(a, b)=1$ and $a>b$. Then:
$\left(1^{0}\right) n=(a+b) p+1 ;$
$\left(2^{0}\right) r=p t ;$
$\left(3^{0}\right) \tau=\left(p t-\frac{a k^{2}-k t}{b}\right)+\frac{(a-b) k-t}{b} ;$
$\left(4^{0}\right) \theta=p t-\frac{a k^{2}-k t}{b} ;$
($\left.5^{0}\right) \lambda_{2}=\frac{a k-t}{b} ;$
$\left(6^{0}\right) \lambda_{3}=-k ;$
$\left(7^{0}\right) \delta=\frac{(a+b) k-t}{b} ;$
$\left(8^{0}\right)(b p+1) t^{2}-b((a+b) p+1) t+a(a+b) k^{2}-2 a k t=0$,
for $k \in \mathbb{N}$ and $t=1,2, \ldots, a+b-1$, where $\delta=\lambda_{2}-\lambda_{3}$.

2. MAIN RESULTS

Remark 5. Since $m_{2}(\bar{G})=m_{3}(G)$ and $m_{3}(\bar{G})=m_{2}(G)$ we note that if $m_{2}(G)=$ $q m_{3}(G)$ then $m_{3}(\bar{G})=q m_{2}(\bar{G})$.

Remark 6. In Theorems $11-15$ the complements of strongly regular graphs appear in pairs in $\left(k^{0}\right)$ and $\left(\bar{k}^{0}\right)$ classes, where k denotes the corresponding number of a class.

Remark 7. $\overline{\alpha K_{\beta}}$ is a strongly regular graph of order $n=\alpha \beta$ and degree $r=$ $(\alpha-1) \beta$ with $\tau=(\alpha-2) \beta$ and $\theta=(\alpha-1) \beta$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-\beta$ with $m_{2}=\alpha(\beta-1)$ and $m_{3}=\alpha-1$.

In order to demonstrate a method which is applied for describing the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$, we shall here establish the parameters of strongly regular graphs with $m_{2}=\left(\frac{7}{2}\right) m_{3}$ and $m_{3}=\left(\frac{7}{2}\right) m_{2}$. In a similar way, we can establish Theorems 12, 13, 14 and 15.

Proposition 8. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{7}{2}\right) m_{3}$. Then G belongs to the class $\left(\overline{2}^{0}\right)$ or $\left(3^{0}\right)$ or $\left(4^{0}\right)$ or $\left(5^{0}\right)$ or $\left(\overline{6}^{0}\right)$ or $\left(7^{0}\right)$ or $\left(\overline{8}^{0}\right)$ or $\left(9^{0}\right)$ represented in Theorem 11.

Proof. Let $m_{2}=7 p, m_{3}=2 p$ and $n=9 p+1$ where $p \in \mathbb{N}$. Let $\lambda_{2}=k$ where k is a positive integer. Then according to Theorem 3 we have (i) $\lambda_{3}=-\frac{7 k+t}{2}$; (ii) $\tau-\theta=-\frac{5 k+t}{2}$; (iii) $\delta=\frac{9 k+t}{2}$; (iv) $r=p t$ and (v) $\theta=p t-\frac{7 k^{2}+k t}{2}$, where $t=1,2, \ldots, 8$. In this case we can easily see that Theorem $3\left(8^{0}\right)$ is reduced to

$$
\begin{equation*}
(2 p+1) t^{2}-2(9 p+1) t+63 k^{2}+14 k t=0 \tag{1}
\end{equation*}
$$

Case 1. $(t=1)$. Using (i)-(v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-\frac{7 k+1}{2}, \tau-\theta=$ $-\frac{5 k+1}{2}, \delta=\frac{9 k+1}{2}, r=p$ and $\theta=p-\frac{7 k^{2}+k}{2}$. Using (1) we find that $16 p+1=$ $7 k(9 k+2)$. Replacing k with $4 k-1$ we arrive at $p=63 k^{2}-28 k+3$. So we obtain that G is a strongly regular graph of order $n=7(9 k-2)^{2}$ and degree $r=63 k^{2}-28 k+3$ with $\tau=7 k^{2}-12 k+2$ and $\theta=k(7 k-2)$.
Case 2. $(t=2)$. Using (i)-(v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-\frac{7 k+2}{2}, \tau-$ $\theta=-\frac{5 k+2}{2}, \delta=\frac{9 k+2}{2}, r=2 p$ and $\theta=2 p-\frac{7 k^{2}+2 k}{2}$. Using (1) we find that $4 p=k(9 k+4)$. Replacing k with $2 k$ we arrive at $p=k(9 k+2)$. So we obtain that G is a strongly regular graph of order $n=(9 k+1)^{2}$ and degree $r=2 k(9 k+2)$ with $\tau=4 k^{2}-3 k-1$ and $\theta=2 k(2 k+1)$.
Case 3. $(t=3)$. Using (i)-(v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-\frac{7 k+3}{2}, \tau-$ $\theta=-\frac{5 k+3}{2}, \delta=\frac{9 k+3}{2}, r=3 p$ and $\theta=3 p-\frac{7 k^{2}+3 k}{2}$. Using (1) we find that $12 p-1=7 k(3 k+2)$. Replacing k with $6 k+1$ we arrive at $p=63 k^{2}+28 k+3$. So we obtain that G is a strongly regular graph of order $n=7(9 k+2)^{2}$ and degree $r=3\left(63 k^{2}+28 k+3\right)$ with $\tau=9 k(7 k+2)$ and $\theta=(3 k+1)(21 k+4)$.
Case 4. $(t=4)$. Using (i)-(v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-\frac{7 k+4}{2}, \tau-$ $\theta=-\frac{5 k+4}{2}, \delta=\frac{9 k+4}{2}, r=4 p$ and $\theta=4 p-\frac{7 k^{2}+4 k}{2}$. Using (1) we find that $40 p-8=7 k(9 k+8)$. Replacing k with $20 k+4$ we arrive at $p=630 k^{2}+280 k+31$. So we obtain that G is a strongly regular graph of order $n=70(9 k+2)^{2}$ and degree $r=4\left(630 k^{2}+280 k+31\right)$ with $\tau=2\left(560 k^{2}+235 k+24\right)$ and $\theta=20(4 k+1)(14 k+3)$.
Case 5. $(t=5)$. Using (i)-(v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-\frac{7 k+5}{2}, \tau-\theta=$ $-\frac{5 k+5}{2}, \delta=\frac{9 k+5}{2}, r=5 p$ and $\theta=5 p-\frac{7 k^{2}+5 k}{2}$. Using (1) we find that $40 p-15=$ $7 k(9 k+10)$. Replacing k with $20 k-5$ we arrive at $p=630 k^{2}-280 k+31$. So we obtain that G is a strongly regular graph of order $n=70(9 k-2)^{2}$ and degree $r=5\left(630 k^{2}-280 k+31\right)$ with $\tau=10(5 k-1)(35 k-9)$ and $\theta=10(5 k-1)(35 k-8)$.

Case 6. $(t=6)$. Using (i) $-(\mathrm{v})$ we find that $\lambda_{2}=k$ and $\lambda_{3}=-\frac{7 k+6}{2}, \tau-$ $\theta=-\frac{5 k+6}{2}, \delta=\frac{9 k+6}{2}, r=6 p$ and $\theta=6 p-\frac{7 k^{2}+6 k}{2}$. Using (1) we find that $12 p-8=7 k(3 k+4)$. Replacing k with $6 k-2$ we arrive at $p=63 k^{2}-28 k+3$. So we obtain that G is a strongly regular graph of order $n=7(9 k-2)^{2}$ and degree $r=6\left(63 k^{2}-28 k+3\right)$ with $\tau=3\left(84 k^{2}-39 k+4\right)$ and $\theta=2(6 k-1)(21 k-5)$.
Case 7. $(t=7)$. Using (i)-(v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-\frac{7 k+7}{2}, \tau-$ $\theta=-\frac{5 k+7}{2}, \delta=\frac{9 k+7}{2}, r=7 p$ and $\theta=7 p-\frac{7 k^{2}+7 k}{2}$. Using (1) we find that $4 p-5=k(9 k+14)$. Replacing k with $2 k-1$ we arrive at $p=k(9 k-2)$. So we obtain that G is a strongly regular graph of order $n=(9 k-1)^{2}$ and degree $r=7 k(9 k-2)$ with $\tau=49 k^{2}-12 k-1$ and $\theta=7 k(7 k-1)$.
Case 8. $(t=8)$. Using (i) $-(\mathrm{v})$ we find that $\lambda_{2}=k$ and $\lambda_{3}=-\frac{7 k+8}{2}, \tau-$ $\theta=-\frac{5 k+8}{2}, \delta=\frac{9 k+8}{2}, r=8 p$ and $\theta=8 p-\frac{7 k^{2}+8 k}{2}$. Using (1) we find that $16 p-48=7 k(9 k+16)$. Replacing k with $4 k$ we arrive at $p=63 k^{2}+28 k+3$. So we obtain that G is a strongly regular graph of order $n=7(9 k+2)^{2}$ and degree $r=8\left(63 k^{2}+28 k+3\right)$ with $\tau=2(7 k+2)(32 k+5)$ and $\theta=8(4 k+1)(14 k+3)$.

Proposition 9. Let G be a connected strongly regular graph of order n and degree r with $m_{3}=\left(\frac{7}{2}\right) m_{2}$. Then G belongs to the class $\left(2^{0}\right)$ or $\left(\overline{3}^{0}\right)$ or $\left(\overline{4}^{0}\right)$ or $\left(5^{0}\right)$ or $\left(6^{0}\right)$ or $\left(\overline{7}^{0}\right)$ or $\left(8^{0}\right)$ or $\left(\overline{9}^{0}\right)$ represented in Theorem 11.

Proof. Let $m_{2}=2 p, m_{3}=7 p$ and $n=9 p+1$ where $p \in \mathbb{N}$. Let $\lambda_{3}=-k$ where k is a positive integer. Then according to Theorem 4 we have (i) $\lambda_{2}=\frac{7 k-t}{2}$; (ii) $\tau-\theta=\frac{5 k-t}{2}$; (iii) $\delta=\frac{9 k-t}{2}$; (iv) $r=p t$ and (v) $\theta=p t-\frac{7 k^{2}-k t}{2}$, where $t=1,2, \ldots, 8$. In this case we can easily see that Theorem $4\left(8^{0}\right)$ is reduced to

$$
\begin{equation*}
(2 p+1) t^{2}-2(9 p+1) t+63 k^{2}-14 k t=0 \tag{2}
\end{equation*}
$$

Case 1. $(t=1)$. Using (i)-(v) we find that $\lambda_{2}=\frac{7 k-1}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{5 k-1}{2}$, $\delta=\frac{9 k-1}{2}, r=p$ and $\theta=p-\frac{7 k^{2}-k}{2}$. Using (2) we find that $16 p+1=7 k(9 k-2)$. Replacing k with $4 k+1$ we arrive at $p=63 k^{2}+28 k+3$. So we obtain that G is a strongly regular graph of order $n=7(9 k+2)^{2}$ and degree $r=63 k^{2}+28 k+3$ with $\tau=7 k^{2}+12 k+2$ and $\theta=k(7 k+2)$.
Case 2. $(t=2)$. Using (i)-(v) we find that $\lambda_{2}=\frac{7 k-2}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{5 k-2}{2}$, $\delta=\frac{9 k-2}{2}, r=2 p$ and $\theta=2 p-\frac{7 k^{2}-2 k}{2}$. Using (2) we find that $4 p=k(9 k-4)$. Replacing k with $2 k$ we arrive at $p=k(9 k-2)$. So we obtain that G is a strongly regular graph of order $n=(9 k-1)^{2}$ and degree $r=2 k(9 k-2)$ with $\tau=4 k^{2}+3 k-1$ and $\theta=2 k(2 k-1)$.
Case 3. $(t=3)$. Using (i)-(v) we find that $\lambda_{2}=\frac{7 k-3}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{5 k-3}{2}$, $\delta=\frac{9 k-3}{2}, r=3 p$ and $\theta=3 p-\frac{7 k^{2}-3 k}{2}$. Using (2) we find that $12 p-1=7 k(3 k-2)$. Replacing k with $6 k-1$ we arrive at $p=63 k^{2}-28 k+3$. So we obtain that G is a strongly regular graph of order $n=7(9 k-2)^{2}$ and degree $r=3\left(63 k^{2}-28 k+3\right)$ with $\tau=9 k(7 k-2)$ and $\theta=(3 k-1)(21 k-4)$.

Case 4. $(t=4)$. Using (i)-(v) we find that $\lambda_{2}=\frac{7 k-4}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{5 k-4}{2}$, $\delta=\frac{9 k-4}{2}, r=4 p$ and $\theta=4 p-\frac{7 k^{2}-4 k}{2}$. Using (2) we find that $40 p-8=7 k(9 k-8)$. Replacing k with $20 k-4$ we arrive at $p=630 k^{2}-280 k+31$. So we obtain that G is a strongly regular graph of order $n=70(9 k-2)^{2}$ and degree $r=4\left(630 k^{2}-280 k+31\right)$ with $\tau=2\left(560 k^{2}-235 k+24\right)$ and $\theta=20(4 k-1)(14 k-3)$.
Case 5. $(t=5)$. Using (i)-(v) we find that $\lambda_{2}=\frac{7 k-5}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{5 k-5}{2}$, $\delta=\frac{9 k-5}{2}, r=5 p$ and $\theta=5 p-\frac{7 k^{2}-5 k}{2}$. Using (2) we find that $40 p-15=$ $7 k(9 k-10)$. Replacing k with $20 k+5$ we arrive at $p=630 k^{2}+280 k+31$. So we obtain that G is a strongly regular graph of order $n=70(9 k+2)^{2}$ and degree $r=5\left(630 k^{2}+280 k+31\right)$ with $\tau=10(5 k+1)(35 k+9)$ and $\theta=10(5 k+1)(35 k+8)$.
Case 6. $(t=6)$. Using (i)-(v) we find that $\lambda_{2}=\frac{7 k-6}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{5 k-6}{2}$, $\delta=\frac{9 k-6}{2}, r=6 p$ and $\theta=6 p-\frac{7 k^{2}-6 k}{2}$. Using (2) we find that $12 p-8=7 k(3 k-4)$. Replacing k with $6 k+2$ we arrive at $p=63 k^{2}+28 k+3$. So we obtain that G is a strongly regular graph of order $n=7(9 k+2)^{2}$ and degree $r=6\left(63 k^{2}+28 k+3\right)$ with $\tau=3\left(84 k^{2}+39 k+4\right)$ and $\theta=2(6 k+1)(21 k+5)$.
Case 7. $(t=7)$. Using (i)-(v) we find that $\lambda_{2}=\frac{7 k-7}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{5 k-7}{2}$, $\delta=\frac{9 k-7}{2}, r=7 p$ and $\theta=7 p-\frac{7 k^{2}-7 k}{2}$. Using (2) we find that $4 p-5=k(9 k-14)$. Replacing k with $2 k+1$ we arrive at $p=k(9 k+2)$. So we obtain that G is a strongly regular graph of order $n=(9 k+1)^{2}$ and degree $r=7 k(9 k+2)$ with $\tau=49 k^{2}+12 k-1$ and $\theta=7 k(7 k+1)$.
Case 8. $(t=8)$. Using (i)-(v) we find that $\lambda_{2}=\frac{7 k-8}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{5 k-8}{2}$, $\delta=\frac{9 k-8}{2}, r=8 p$ and $\theta=8 p-\frac{7 k^{2}-8 k}{2}$. Using (2) we find that $16 p-48=$ $7 k(9 k-16)$. Replacing k with $4 k$ we arrive at $p=63 k^{2}-28 k+3$. So we obtain that G is a strongly regular graph of order $n=7(9 k-2)^{2}$ and degree $r=8\left(63 k^{2}-28 k+3\right)$ with $\tau=2(7 k-2)(32 k-5)$ and $\theta=8(4 k-1)(14 k-3)$.

Remark 10. We note that $\overline{7 K_{4}}$ is a strongly regular graph with $m_{2}=\left(\frac{7}{2}\right) m_{3}$. It is obtained from the class Theorem $11\left(\overline{6}^{0}\right)$ for $k=0$.

Theorem 11. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{7}{2}\right) m_{3}$ or $m_{3}=\left(\frac{7}{2}\right) m_{2}$. Then G is one of the following strongly regular graphs:
$\left(1^{0}\right) G$ is the strongly regular graph $\overline{7 K_{4}}$ of order $n=28$ and degree $r=24$ with $\tau=20$ and $\theta=24$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-4$ with $m_{2}=21$ and $m_{3}=6$;
$\left(2^{0}\right) G$ is a strongly regular graph of order $n=(9 k-1)^{2}$ and degree $r=2 k(9 k-2)$ with $\tau=4 k^{2}+3 k-1$ and $\theta=2 k(2 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=7 k-1$ and $\lambda_{3}=-2 k$ with $m_{2}=2 k(9 k-2)$ and $m_{3}=7 k(9 k-2)$;
$\left(\overline{2}^{0}\right) G$ is a strongly regular graph of order $n=(9 k-1)^{2}$ and degree $r=7 k(9 k-2)$ with $\tau=49 k^{2}-12 k-1$ and $\theta=7 k(7 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=2 k-1$ and $\lambda_{3}=-7 k$ with $m_{2}=7 k(9 k-2)$ and $m_{3}=2 k(9 k-2)$;
M. Lepović / On strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$
$\left(3^{0}\right) G$ is a strongly regular graph of order $n=(9 k+1)^{2}$ and degree $r=2 k(9 k+2)$ with $\tau=4 k^{2}-3 k-1$ and $\theta=2 k(2 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=2 k$ and $\lambda_{3}=-(7 k+1)$ with $m_{2}=7 k(9 k+2)$ and $m_{3}=2 k(9 k+2) ;$
$\left(\overline{3}^{0}\right) G$ is a strongly regular graph of order $n=(9 k+1)^{2}$ and degree $r=7 k(9 k+2)$ with $\tau=49 k^{2}+12 k-1$ and $\theta=7 k(7 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=7 k$ and $\lambda_{3}=-(2 k+1)$ with $m_{2}=2 k(9 k+2)$ and $m_{3}=7 k(9 k+2)$;
$\left(4^{0}\right) G$ is a strongly regular graph of order $n=7(9 k-2)^{2}$ and degree $r=63 k^{2}-$ $28 k+3$ with $\tau=7 k^{2}-12 k+2$ and $\theta=k(7 k-2)$, where $k \geq 2$. Its eigenvalues are $\lambda_{2}=4 k-1$ and $\lambda_{3}=-(14 k-3)$ with $m_{2}=7\left(63 k^{2}-28 k+3\right)$ and $m_{3}=2\left(63 k^{2}-28 k+3\right) ;$
$\left(\overline{4}^{0}\right) G$ is a strongly regular graph of order $n=7(9 k-2)^{2}$ and degree $r=8\left(63 k^{2}-\right.$ $28 k+3)$ with $\tau=2(7 k-2)(32 k-5)$ and $\theta=8(4 k-1)(14 k-3)$, where $k \geq 2$. Its eigenvalues are $\lambda_{2}=14 k-4$ and $\lambda_{3}=-4 k$ with $m_{2}=2\left(63 k^{2}-28 k+3\right)$ and $m_{3}=7\left(63 k^{2}-28 k+3\right) ;$
$\left(5^{0}\right) G$ is a strongly regular graph of order $n=7(9 k-2)^{2}$ and degree $r=3\left(63 k^{2}-\right.$ $28 k+3)$ with $\tau=9 k(7 k-2)$ and $\theta=(3 k-1)(21 k-4)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=21 k-5$ and $\lambda_{3}=-(6 k-1)$ with $m_{2}=2\left(63 k^{2}-28 k+3\right)$ and $m_{3}=7\left(63 k^{2}-28 k+3\right) ;$
$\left(\overline{5}^{0}\right) G$ is a strongly regular graph of order $n=7(9 k-2)^{2}$ and degree $r=6\left(63 k^{2}-\right.$ $28 k+3)$ with $\tau=3\left(84 k^{2}-39 k+4\right)$ and $\theta=2(6 k-1)(21 k-5)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=6 k-2$ and $\lambda_{3}=-(21 k-4)$ with $m_{2}=$ $7\left(63 k^{2}-28 k+3\right)$ and $m_{3}=2\left(63 k^{2}-28 k+3\right) ;$
$\left(6^{0}\right) G$ is a strongly regular graph of order $n=7(9 k+2)^{2}$ and degree $r=63 k^{2}+$ $28 k+3$ with $\tau=7 k^{2}+12 k+2$ and $\theta=k(7 k+2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=14 k+3$ and $\lambda_{3}=-(4 k+1)$ with $m_{2}=2\left(63 k^{2}+28 k+3\right)$ and $m_{3}=7\left(63 k^{2}+28 k+3\right) ;$
$\left(\overline{6}^{0}\right) G$ is a strongly regular graph of order $n=7(9 k+2)^{2}$ and degree $r=8\left(63 k^{2}+\right.$ $28 k+3)$ with $\tau=2(7 k+2)(32 k+5)$ and $\theta=8(4 k+1)(14 k+3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=4 k$ and $\lambda_{3}=-(14 k+4)$ with $m_{2}=7\left(63 k^{2}+28 k+3\right)$ and $m_{3}=2\left(63 k^{2}+28 k+3\right)$;
$\left(7^{0}\right) G$ is a strongly regular graph of order $n=7(9 k+2)^{2}$ and degree $r=3\left(63 k^{2}+\right.$ $28 k+3)$ with $\tau=9 k(7 k+2)$ and $\theta=(3 k+1)(21 k+4)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=6 k+1$ and $\lambda_{3}=-(21 k+5)$ with $m_{2}=7\left(63 k^{2}+28 k+3\right)$ and $m_{3}=2\left(63 k^{2}+28 k+3\right)$;
$\left(\overline{7}^{0}\right) G$ is a strongly regular graph of order $n=7(9 k+2)^{2}$ and degree $r=6\left(63 k^{2}+\right.$ $28 k+3)$ with $\tau=3\left(84 k^{2}+39 k+4\right)$ and $\theta=2(6 k+1)(21 k+5)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=21 k+4$ and $\lambda_{3}=-(6 k+2)$ with $m_{2}=2\left(63 k^{2}+28 k+3\right)$ and $m_{3}=7\left(63 k^{2}+28 k+3\right)$;
$\left(8^{0}\right) G$ is a strongly regular graph of order $n=70(9 k-2)^{2}$ and degree $r=$ $4\left(630 k^{2}-280 k+31\right)$ with $\tau=2\left(560 k^{2}-235 k+24\right)$ and $\theta=20(4 k-1)(14 k-3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=70 k-16$ and $\lambda_{3}=-(20 k-4)$ with $m_{2}=2\left(630 k^{2}-280 k+31\right)$ and $m_{3}=7\left(630 k^{2}-280 k+31\right) ;$
$\left(\overline{8}^{0}\right) G$ is a strongly regular graph of order $n=70(9 k-2)^{2}$ and degree $r=$ $5\left(630 k^{2}-280 k+31\right)$ with $\tau=10(5 k-1)(35 k-9)$ and $\theta=10(5 k-1)(35 k-8)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=20 k-5$ and $\lambda_{3}=-(70 k-15)$ with $m_{2}=7\left(630 k^{2}-280 k+31\right)$ and $m_{3}=2\left(630 k^{2}-280 k+31\right) ;$
$\left(9^{0}\right) G$ is a strongly regular graph of order $n=70(9 k+2)^{2}$ and degree $r=$ $4\left(630 k^{2}+280 k+31\right)$ with $\tau=2\left(560 k^{2}+235 k+24\right)$ and $\theta=20(4 k+1)(14 k+3)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=20 k+4$ and $\lambda_{3}=-(70 k+16)$ with $m_{2}=7\left(630 k^{2}+280 k+31\right)$ and $m_{3}=2\left(630 k^{2}+280 k+31\right)$;
$\left(\overline{9}^{0}\right) G$ is a strongly regular graph of order $n=70(9 k+2)^{2}$ and degree $r=$ $5\left(630 k^{2}+280 k+31\right)$ with $\tau=10(5 k+1)(35 k+9)$ and $\theta=10(5 k+1)(35 k+8)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=70 k+15$ and $\lambda_{3}=-(20 k+5)$ with $m_{2}=2\left(630 k^{2}+280 k+31\right)$ and $m_{3}=7\left(630 k^{2}+280 k+31\right)$.

Proof. First, according to Remark 7 we have $2 \alpha(\beta-1)=7(\alpha-1)$, from which we find that $\alpha=7, \beta=4$. In view of this we obtain the strongly regular graph represented in Theorem $11\left(1^{0}\right)$. Next, according to Proposition 8 it turns out that G belongs to the class $\left(\overline{2}^{0}\right)$ or $\left(3^{0}\right)$ or $\left(4^{0}\right)$ or $\left(\overline{5}^{0}\right)$ or $\left(\overline{6}^{0}\right)$ or $\left(7^{0}\right)$ or $\left(\overline{8}^{0}\right)$ or $\left(9^{0}\right)$ if $m_{2}=\left(\frac{7}{2}\right) m_{3}$. According to Proposition 9 it turns out that G belongs to the class $\left(2^{0}\right)$ or $\left(\overline{3}^{0}\right)$ or $\left(\overline{4}^{0}\right)$ or $\left(5^{0}\right)$ or $\left(6^{0}\right)$ or $\left(\overline{7}^{0}\right)$ or $\left(8^{0}\right)$ or $\left(\overline{9}^{0}\right)$ if $m_{3}=\left(\frac{7}{2}\right) m_{2}$.

Theorem 12. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{7}{3}\right) m_{3}$ or $m_{3}=\left(\frac{7}{3}\right) m_{2}$. Then G is one of the following strongly regular graphs:
$\left(1^{0}\right) G$ is the strongly regular graph $\overline{7 K_{3}}$ of order $n=21$ and degree $r=18$ with $\tau=15$ and $\theta=18$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-3$ with $m_{2}=14$ and $m_{3}=6$;
$\left(2^{0}\right) G$ is a strongly regular graph of order $n=(10 k-1)^{2}$ and degree $r=6 k(5 k-1)$ with $\tau=9 k^{2}+k-1$ and $\theta=3 k(3 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=7 k-1$ and $\lambda_{3}=-3 k$ with $m_{2}=6 k(5 k-1)$ and $m_{3}=14 k(5 k-1) ;$
$\left(\overline{2}^{0}\right) G$ is a strongly regular graph of order $n=(10 k-1)^{2}$ and degree $r=14 k(5 k-$ 1) with $\tau=49 k^{2}-11 k-1$ and $\theta=7 k(7 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=3 k-1$ and $\lambda_{3}=-7 k$ with $m_{2}=14 k(5 k-1)$ and $m_{3}=6 k(5 k-1)$;
$\left(3^{0}\right) G$ is a strongly regular graph of order $n=(10 k+1)^{2}$ and degree $r=6 k(5 k+1)$ with $\tau=9 k^{2}-k-1$ and $\theta=3 k(3 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=3 k$ and $\lambda_{3}=-(7 k+1)$ with $m_{2}=14 k(5 k+1)$ and $m_{3}=6 k(5 k+1) ;$
$\left(\overline{3}^{0}\right) G$ is a strongly regular graph of order $n=(10 k+1)^{2}$ and degree $r=14 k(5 k+$ 1) with $\tau=49 k^{2}+11 k-1$ and $\theta=7 k(7 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=7 k$ and $\lambda_{3}=-(3 k+1)$ with $m_{2}=6 k(5 k+1)$ and $m_{3}=14 k(5 k+1)$;
$\left(4^{0}\right) G$ is a strongly regular graph of order $n=21(10 k-1)^{2}$ and degree $r=$ $210 k^{2}-42 k+2$ with $\tau=21 k^{2}-15 k+1$ and $\theta=3 k(7 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=9 k-1$ and $\lambda_{3}=-(21 k-2)$ with $m_{2}=7\left(210 k^{2}-42 k+2\right)$ and $m_{3}=3\left(210 k^{2}-42 k+2\right)$;
$\left(\overline{4}^{0}\right) G$ is a strongly regular graph of order $n=21(10 k-1)^{2}$ and degree $r=$ $9\left(210 k^{2}-42 k+2\right)$ with $\tau=3\left(567 k^{2}-113 k+5\right)$ and $\theta=9(9 k-1)(21 k-2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=21 k-3$ and $\lambda_{3}=-9 k$ with $m_{2}=$ $3\left(210 k^{2}-42 k+2\right)$ and $m_{3}=7\left(210 k^{2}-42 k+2\right)$;
$\left(5^{0}\right) G$ is a strongly regular graph of order $n=21(10 k-1)^{2}$ and degree $r=$ $2\left(210 k^{2}-42 k+2\right)$ with $\tau=84 k^{2}-4 k-1$ and $\theta=(6 k-1)(14 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=28 k-3$ and $\lambda_{3}=-(12 k-1)$ with $m_{2}=3\left(210 k^{2}-42 k+2\right)$ and $m_{3}=7\left(210 k^{2}-42 k+2\right) ;$
$\left(5^{0}\right) G$ is a strongly regular graph of order $n=21(10 k-1)^{2}$ and degree $r=$ $8\left(210 k^{2}-42 k+2\right)$ with $\tau=4\left(336 k^{2}-68 k+3\right)$ and $\theta=4(12 k-1)(28 k-3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=12 k-2$ and $\lambda_{3}=-(28 k-2)$ with $m_{2}=7\left(210 k^{2}-42 k+2\right)$ and $m_{3}=3\left(210 k^{2}-42 k+2\right) ;$
$\left(6^{0}\right) G$ is a strongly regular graph of order $n=21(10 k-1)^{2}$ and degree $r=$ $5\left(210 k^{2}-42 k+2\right)$ with $\tau=525 k^{2}-115 k+5$ and $\theta=(15 k-1)(35 k-4)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=15 k-2$ and $\lambda_{3}=-(35 k-3)$ with $m_{2}=7\left(210 k^{2}-42 k+2\right)$ and $m_{3}=3\left(210 k^{2}-42 k+2\right)$;
$\left(\overline{6}^{0}\right) G$ is a strongly regular graph of order $n=21(10 k-1)^{2}$ and degree $r=$ $5\left(210 k^{2}-42 k+2\right)$ with $\tau=525 k^{2}-95 k+3$ and $\theta=(15 k-2)(35 k-3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=35 k-4$ and $\lambda_{3}=-(15 k-1)$ with $m_{2}=3\left(210 k^{2}-42 k+2\right)$ and $m_{3}=7\left(210 k^{2}-42 k+2\right) ;$
$\left(7^{0}\right) G$ is a strongly regular graph of order $n=21(10 k+1)^{2}$ and degree $r=$ $210 k^{2}+42 k+2$ with $\tau=21 k^{2}+15 k+1$ and $\theta=3 k(7 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=21 k+2$ and $\lambda_{3}=-(9 k+1)$ with $m_{2}=3\left(210 k^{2}+42 k+2\right)$ and $m_{3}=7\left(210 k^{2}+42 k+2\right)$;
$\left(\overline{7}^{0}\right) G$ is a strongly regular graph of order $n=21(10 k+1)^{2}$ and degree $r=$ $9\left(210 k^{2}+42 k+2\right)$ with $\tau=3\left(567 k^{2}+113 k+5\right)$ and $\theta=9(9 k+1)(21 k+2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=9 k$ and $\lambda_{3}=-(21 k+3)$ with $m_{2}=7\left(210 k^{2}+42 k+2\right)$ and $m_{3}=3\left(210 k^{2}+42 k+2\right) ;$
$\left(8^{0}\right) G$ is a strongly regular graph of order $n=21(10 k+1)^{2}$ and degree $r=$ $2\left(210 k^{2}+42 k+2\right)$ with $\tau=84 k^{2}+4 k-1$ and $\theta=(6 k+1)(14 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=12 k+1$ and $\lambda_{3}=-(28 k+3)$ with $m_{2}=7\left(210 k^{2}+42 k+2\right)$ and $m_{3}=3\left(210 k^{2}+42 k+2\right)$;

382 M. Lepović / On strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$
$\left(\overline{8}^{0}\right) G$ is a strongly regular graph of order $n=21(10 k+1)^{2}$ and degree $r=$ $8\left(210 k^{2}+42 k+2\right)$ with $\tau=4\left(336 k^{2}+68 k+3\right)$ and $\theta=4(12 k+1)(28 k+3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=28 k+2$ and $\lambda_{3}=-(12 k+2)$ with $m_{2}=3\left(210 k^{2}+42 k+2\right)$ and $m_{3}=7\left(210 k^{2}+42 k+2\right) ;$
$\left(9^{0}\right) G$ is a strongly regular graph of order $n=21(10 k+1)^{2}$ and degree $r=$ $5\left(210 k^{2}+42 k+2\right)$ with $\tau=525 k^{2}+95 k+3$ and $\theta=(15 k+2)(35 k+3)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=15 k+1$ and $\lambda_{3}=-(35 k+4)$ with $m_{2}=7\left(210 k^{2}+42 k+2\right)$ and $m_{3}=3\left(210 k^{2}+42 k+2\right) ;$
$\left(\overline{9}^{0}\right) G$ is a strongly regular graph of order $n=21(10 k+1)^{2}$ and degree $r=$ $5\left(210 k^{2}+42 k+2\right)$ with $\tau=525 k^{2}+115 k+5$ and $\theta=(15 k+1)(35 k+4)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=35 k+3$ and $\lambda_{3}=-(15 k+2)$ with $m_{2}=3\left(210 k^{2}+42 k+2\right)$ and $m_{3}=7\left(210 k^{2}+42 k+2\right)$.

Theorem 13. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{7}{4}\right) m_{3}$ or $m_{3}=\left(\frac{7}{4}\right) m_{2}$. Then G is one of the following strongly regular graphs:
$\left(1^{0}\right) G$ is a strongly regular graph of order $n=(11 k-1)^{2}$ and degree $r=4 k(11 k-$ 2) with $\tau=16 k^{2}-k-1$ and $\theta=4 k(4 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=7 k-1$ and $\lambda_{3}=-4 k$ with $m_{2}=4 k(11 k-2)$ and $m_{3}=7 k(11 k-2)$;
$\left(\overline{1}^{0}\right) G$ is a strongly regular graph of order $n=(11 k-1)^{2}$ and degree $r=7 k(11 k-$ 2) with $\tau=49 k^{2}-10 k-1$ and $\theta=7 k(7 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=4 k-1$ and $\lambda_{3}=-7 k$ with $m_{2}=7 k(11 k-2)$ and $m_{3}=4 k(11 k-2)$;
$\left(2^{0}\right) G$ is a strongly regular graph of order $n=(11 k+1)^{2}$ and degree $r=4 k(11 k+$ 2) with $\tau=16 k^{2}+k-1$ and $\theta=4 k(4 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=4 k$ and $\lambda_{3}=-(7 k+1)$ with $m_{2}=7 k(11 k+2)$ and $m_{3}=4 k(11 k+2)$;
$\left(\overline{2}^{0}\right) G$ is a strongly regular graph of order $n=(11 k+1)^{2}$ and degree $r=7 k(11 k+$ 2) with $\tau=49 k^{2}+10 k-1$ and $\theta=7 k(7 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=7 k$ and $\lambda_{3}=-(4 k+1)$ with $m_{2}=4 k(11 k+2)$ and $m_{3}=7 k(11 k+2)$;
$\left(3^{0}\right) G$ is a strongly regular graph of order $n=14(11 k-2)^{2}$ and degree $r=$ $2\left(154 k^{2}-56 k+5\right)$ with $\tau=k(56 k-13)$ and $\theta=2(4 k-1)(7 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=21 k-4$ and $\lambda_{3}=-(12 k-2)$ with $m_{2}=$ $4\left(154 k^{2}-56 k+5\right)$ and $m_{3}=7\left(154 k^{2}-56 k+5\right)$;
$\left(\overline{3}^{0}\right) G$ is a strongly regular graph of order $n=14(11 k-2)^{2}$ and degree $r=$ $9\left(154 k^{2}-56 k+5\right)$ with $\tau=18(7 k-1)(9 k-2)$ and $\theta=9(6 k-1)(21 k-4)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=12 k-3$ and $\lambda_{3}=-(21 k-3)$ with $m_{2}=7\left(154 k^{2}-56 k+5\right)$ and $m_{3}=4\left(154 k^{2}-56 k+5\right)$;
$\left(4^{0}\right) G$ is a strongly regular graph of order $n=14(11 k+2)^{2}$ and degree $r=$ $2\left(154 k^{2}+56 k+5\right)$ with $\tau=k(56 k+13)$ and $\theta=2(4 k+1)(7 k+1)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=12 k+2$ and $\lambda_{3}=-(21 k+4)$ with $m_{2}=$ $7\left(154 k^{2}+56 k+5\right)$ and $m_{3}=4\left(154 k^{2}+56 k+5\right) ;$
$\left(\overline{4}^{0}\right) G$ is a strongly regular graph of order $n=14(11 k+2)^{2}$ and degree $r=$ $9\left(154 k^{2}+56 k+5\right)$ with $\tau=18(7 k+1)(9 k+2)$ and $\theta=9(6 k+1)(21 k+4)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=21 k+3$ and $\lambda_{3}=-(12 k+3)$ with $m_{2}=4\left(154 k^{2}+56 k+5\right)$ and $m_{3}=7\left(154 k^{2}+56 k+5\right) ;$
$\left(5^{0}\right) G$ is a strongly regular graph of order $n=42(11 k-4)^{2}$ and degree $r=$ $3\left(462 k^{2}-336 k+61\right)$ with $\tau=18(3 k-1)(7 k-3)$ and $\theta=6(3 k-1)(21 k-8)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=24 k-9$ and $\lambda_{3}=-(42 k-15)$ with $m_{2}=7\left(462 k^{2}-336 k+61\right)$ and $m_{3}=4\left(462 k^{2}-336 k+61\right)$;
$\left(\overline{5}^{0}\right) G$ is a strongly regular graph of order $n=42(11 k-4)^{2}$ and degree $r=$ $8\left(462 k^{2}-336 k+61\right)$ with $\tau=2\left(1344 k^{2}-975 k+176\right)$ and $\theta=24(8 k-3)(14 k-$ $5)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=42 k-16$ and $\lambda_{3}=-(24 k-8)$ with $m_{2}=4\left(462 k^{2}-336 k+61\right)$ and $m_{3}=7\left(462 k^{2}-336 k+61\right)$;
$\left(6^{0}\right) G$ is a strongly regular graph of order $n=42(11 k+4)^{2}$ and degree $r=$ $3\left(462 k^{2}+336 k+61\right)$ with $\tau=18(3 k+1)(7 k+3)$ and $\theta=6(3 k+1)(21 k+8)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=42 k+15$ and $\lambda_{3}=-(24 k+9)$ with $m_{2}=4\left(462 k^{2}+336 k+61\right)$ and $m_{3}=7\left(462 k^{2}+336 k+61\right)$;
$\left(\overline{6}^{0}\right) G$ is a strongly regular graph of order $n=42(11 k+4)^{2}$ and degree $r=$ $8\left(462 k^{2}+336 k+61\right)$ with $\tau=2\left(1344 k^{2}+975 k+176\right)$ and $\theta=24(8 k+3)(14 k+$ $5)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=24 k+8$ and $\lambda_{3}=-(42 k+16)$ with $m_{2}=7\left(462 k^{2}+336 k+61\right)$ and $m_{3}=4\left(462 k^{2}+336 k+61\right)$;
$\left(7^{0}\right) G$ is a strongly regular graph of order $n=70(11 k-5)^{2}$ and degree $r=$ $770 k^{2}-700 k+159$ with $\tau=2\left(35 k^{2}-25 k+4\right)$ and $\theta=5(2 k-1)(7 k-3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=35 k-16$ and $\lambda_{3}=-(20 k-9)$ with $m_{2}=4\left(770 k^{2}-700 k+159\right)$ and $m_{3}=7\left(770 k^{2}-700 k+159\right) ;$
$\left(\overline{7}^{0}\right) G$ is a strongly regular graph of order $n=70(11 k-5)^{2}$ and degree $r=$ $10\left(770 k^{2}-700 k+159\right)$ with $\tau=5\left(1400 k^{2}-1273 k+289\right)$ and $\theta=10(20 k-$ $9)(35 k-16)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=20 k-10$ and $\lambda_{3}=$ $-(35 k-15)$ with $m_{2}=7\left(770 k^{2}-700 k+159\right)$ and $m_{3}=4\left(770 k^{2}-700 k+159\right)$;
$\left(8^{0}\right) G$ is a strongly regular graph of order $n=70(11 k+5)^{2}$ and degree $r=$ $770 k^{2}+700 k+159$ with $\tau=2\left(35 k^{2}+25 k+4\right)$ and $\theta=5(2 k+1)(7 k+3)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=20 k+9$ and $\lambda_{3}=-(35 k+16)$ with $m_{2}=7\left(770 k^{2}+700 k+159\right)$ and $m_{3}=4\left(770 k^{2}+700 k+159\right) ;$
$\left(\overline{8}^{0}\right) G$ is a strongly regular graph of order $n=70(11 k+5)^{2}$ and degree $r=$ $10\left(770 k^{2}+700 k+159\right)$ with $\tau=5\left(1400 k^{2}+1273 k+289\right)$ and $\theta=10(20 k+$

384 M. Lepović / On strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$
9)($35 k+16$), where $k \geq 0$. Its eigenvalues are $\lambda_{2}=35 k+15$ and $\lambda_{3}=$ $-(20 k+10)$ with $m_{2}=4\left(770 k^{2}+700 k+159\right)$ and $m_{3}=7\left(770 k^{2}+700 k+159\right)$;
$\left(9^{0}\right) G$ is a strongly regular graph of order $n=210(11 k-1)^{2}$ and degree $r=$ $5\left(2310 k^{2}-420 k+19\right)$ with $\tau=10\left(525 k^{2}-93 k+4\right)$ and $\theta=15(10 k-1)(35 k-$ $3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=105 k-10$ and $\lambda_{3}=-(60 k-5)$ with $m_{2}=4\left(2310 k^{2}-420 k+19\right)$ and $m_{3}=7\left(2310 k^{2}-420 k+19\right)$;
$\left(\overline{9}^{0}\right) G$ is a strongly regular graph of order $n=210(11 k-1)^{2}$ and degree $r=$ $6\left(2310 k^{2}-420 k+19\right)$ with $\tau=9\left(840 k^{2}-155 k+7\right)$ and $\theta=30(12 k-1)(21 k-$ $2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=60 k-6$ and $\lambda_{3}=-(105 k-9)$ with $m_{2}=7\left(2310 k^{2}-420 k+19\right)$ and $m_{3}=4\left(2310 k^{2}-420 k+19\right)$;
$\left(10^{0}\right) G$ is a strongly regular graph of order $n=210(11 k+1)^{2}$ and degree $r=$ $5\left(2310 k^{2}+420 k+19\right)$ with $\tau=10\left(525 k^{2}+93 k+4\right)$ and $\theta=15(10 k+1)(35 k+$ 3), where $k \geq 0$. Its eigenvalues are $\lambda_{2}=60 k+5$ and $\lambda_{3}=-(105 k+10)$ with $m_{2}=7\left(2310 k^{2}+420 k+19\right)$ and $m_{3}=4\left(2310 k^{2}+420 k+19\right)$;
$\left(\overline{10}^{0}\right) G$ is a strongly regular graph of order $n=210(11 k+1)^{2}$ and degree $r=$ $6\left(2310 k^{2}+420 k+19\right)$ with $\tau=9\left(840 k^{2}+155 k+7\right)$ and $\theta=30(12 k+1)(21 k+$ $2)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=105 k+9$ and $\lambda_{3}=-(60 k+6)$ with $m_{2}=4\left(2310 k^{2}+420 k+19\right)$ and $m_{3}=7\left(2310 k^{2}+420 k+19\right)$.

Theorem 14. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{7}{5}\right) m_{3}$ or $m_{3}=\left(\frac{7}{5}\right) m_{2}$. Then G is one of the following strongly regular graphs:
$\left(1^{0}\right) G$ is a strongly regular graph of order $n=(12 k-1)^{2}$ and degree $r=10 k(6 k-$ 1) with $\tau=25 k^{2}-3 k-1$ and $\theta=5 k(5 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=7 k-1$ and $\lambda_{3}=-5 k$ with $m_{2}=10 k(6 k-1)$ and $m_{3}=14 k(6 k-1)$;
$\left(\overline{1}^{0}\right) G$ is a strongly regular graph of order $n=(12 k-1)^{2}$ and degree $r=14 k(6 k-$ 1) with $\tau=49 k^{2}-9 k-1$ and $\theta=7 k(7 k-1)$. where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=5 k-1$ and $\lambda_{3}=-7 k$ with $m_{2}=14 k(6 k-1)$ and $m_{3}=10 k(6 k-1)$;
$\left(2^{0}\right) G$ is a strongly regular graph of order $n=(12 k+1)^{2}$ and degree $r=10 k(6 k+$ 1) with $\tau=25 k^{2}+3 k-1$ and $\theta=5 k(5 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=5 k$ and $\lambda_{3}=-(7 k+1)$ with $m_{2}=14 k(6 k+1)$ and $m_{3}=10 k(6 k+1)$;
$\left(\overline{2}^{0}\right) G$ is a strongly regular graph of order $n=(12 k+1)^{2}$ and degree $r=14 k(6 k+$ 1) with $\tau=49 k^{2}+9 k-1$ and $\theta=7 k(7 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=7 k$ and $\lambda_{3}=-(5 k+1)$ with $m_{2}=10 k(6 k+1)$ and $m_{3}=14 k(6 k+1)$;
$\left(3^{0}\right) G$ is a strongly regular graph of order $n=385(12 k-5)^{2}$ and degree $r=$ $4620 k^{2}-3850 k+802$ with $\tau=385 k^{2}-341 k+75$ and $\theta=11(5 k-2)(7 k-3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=55 k-23$ and $\lambda_{3}=-(77 k-32)$ with $m_{2}=7\left(4620 k^{2}-3850 k+802\right)$ and $m_{3}=5\left(4620 k^{2}-3850 k+802\right)$;
$\left(\overline{3}^{0}\right) G$ is a strongly regular graph of order $n=385(12 k-5)^{2}$ and degree $r=$ $11\left(4620 k^{2}-3850 k+802\right)$ with $\tau=11\left(4235 k^{2}-3529 k+735\right)$ and $\theta=$ $11(55 k-23)(77 k-32)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=77 k-33$ and $\lambda_{3}=-(55 k-22)$ with $m_{2}=5\left(4620 k^{2}-3850 k+802\right)$ and $m_{3}=$ $7\left(4620 k^{2}-3850 k+802\right)$;
$\left(4^{0}\right) G$ is a strongly regular graph of order $n=385(12 k+5)^{2}$ and degree $r=$ $4620 k^{2}+3850 k+802$ with $\tau=385 k^{2}+341 k+75$ and $\theta=11(5 k+2)(7 k+3)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=77 k+32$ and $\lambda_{3}=-(55 k+23)$ with $m_{2}=5\left(4620 k^{2}+3850 k+802\right)$ and $m_{3}=7\left(4620 k^{2}+3850 k+802\right) ;$
$\left(\overline{4}^{0}\right) G$ is a strongly regular graph of order $n=385(12 k+5)^{2}$ and degree $r=$ $11\left(4620 k^{2}+3850 k+802\right)$ with $\tau=11\left(4235 k^{2}+3529 k+735\right)$ and $\theta=$ $11(55 k+23)(77 k+32)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=55 k+22$ and $\lambda_{3}=-(77 k+33)$ with $m_{2}=7\left(4620 k^{2}+3850 k+802\right)$ and $m_{3}=$ $5\left(4620 k^{2}+3850 k+802\right)$.

Theorem 15. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{7}{6}\right) m_{3}$ or $m_{3}=\left(\frac{7}{6}\right) m_{2}$. Then G is one of the following strongly regular graphs:
$\left(1^{0}\right) G$ is the strongly regular graph $\overline{7 K_{2}}$ of order $n=14$ and degree $r=12$ with $\tau=10$ and $\theta=12$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-2$ with $m_{2}=7$ and $m_{3}=6$;
$\left(2^{0}\right) G$ is a strongly regular graph of order $n=(13 k-1)^{2}$ and degree $r=6 k(13 k-$ 2) with $\tau=36 k^{2}-5 k-1$ and $\theta=6 k(6 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=7 k-1$ and $\lambda_{3}=-6 k$ with $m_{2}=6 k(13 k-2)$ and $m_{3}=7 k(13 k-2)$;
$\left(\overline{2}^{0}\right) G$ is a strongly regular graph of order $n=(13 k-1)^{2}$ and degree $r=7 k(13 k-$ 2) with $\tau=49 k^{2}-8 k-1$ and $\theta=7 k(7 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=6 k-1$ and $\lambda_{3}=-7 k$ with $m_{2}=7 k(13 k-2)$ and $m_{3}=6 k(13 k-2)$;
$\left(3^{0}\right) G$ is a strongly regular graph of order $n=(13 k+1)^{2}$ and degree $r=6 k(13 k+$ 2) with $\tau=36 k^{2}+5 k-1$ and $\theta=6 k(6 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=6 k$ and $\lambda_{3}=-(7 k+1)$ with $m_{2}=7 k(13 k+2)$ and $m_{3}=6 k(13 k+2) ;$
$\left(\overline{3}^{0}\right) G$ is a strongly regular graph of order $n=(13 k+1)^{2}$ and degree $r=7 k(13 k+$ 2) with $\tau=49 k^{2}+8 k-1$ and $\theta=7 k(7 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=7 k$ and $\lambda_{3}=-(6 k+1)$ with $m_{2}=6 k(13 k+2)$ and $m_{3}=7 k(13 k+2) ;$
$\left(4^{0}\right) G$ is a strongly regular graph of order $n=14(13 k-1)^{2}$ and degree $r=182 k^{2}-$ $28 k+1$ with $\tau=2 k(7 k-2)$ and $\theta=2 k(7 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=12 k-1$ and $\lambda_{3}=-(14 k-1)$ with $m_{2}=7\left(182 k^{2}-28 k+1\right)$ and $m_{3}=6\left(182 k^{2}-28 k+1\right)$;

386 M. Lepović / On strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$
$\left(\overline{4}^{0}\right) G$ is a strongly regular graph of order $n=14(13 k-1)^{2}$ and degree $r=$ $12\left(182 k^{2}-28 k+1\right)$ with $\tau=2\left(1008 k^{2}-155 k+5\right)$ and $\theta=12(12 k-1)(14 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=14 k-2$ and $\lambda_{3}=-12 k$ with $m_{2}=$ $6\left(182 k^{2}-28 k+1\right)$ and $m_{3}=7\left(182 k^{2}-28 k+1\right)$;
$\left(5^{0}\right) G$ is a strongly regular graph of order $n=14(13 k+1)^{2}$ and degree $r=182 k^{2}+$ $28 k+1$ with $\tau=2 k(7 k+2)$ and $\theta=2 k(7 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=14 k+1$ and $\lambda_{3}=-(12 k+1)$ with $m_{2}=6\left(182 k^{2}+28 k+1\right)$ and $m_{3}=7\left(182 k^{2}+28 k+1\right) ;$
$\left(\overline{5}^{0}\right) G$ is a strongly regular graph of order $n=14(13 k+1)^{2}$ and degree $r=$ $12\left(182 k^{2}+28 k+1\right)$ with $\tau=2\left(1008 k^{2}+155 k+5\right)$ and $\theta=12(12 k+1)(14 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=12 k$ and $\lambda_{3}=-(14 k+2)$ with $m_{2}=7\left(182 k^{2}+28 k+1\right)$ and $m_{3}=6\left(182 k^{2}+28 k+1\right) ;$
$\left(6^{0}\right) G$ is a strongly regular graph of order $n=35(13 k-4)^{2}$ and degree $r=$ $3\left(455 k^{2}-280 k+43\right)$ with $\tau=315 k^{2}-190 k+28$ and $\theta=15(3 k-1)(7 k-2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=35 k-11$ and $\lambda_{3}=-(30 k-9)$ with $m_{2}=6\left(455 k^{2}-280 k+43\right)$ and $m_{3}=7\left(455 k^{2}-280 k+43\right) ;$
$\left(\overline{6}^{0}\right) G$ is a strongly regular graph of order $n=35(13 k-4)^{2}$ and degree $r=$ $10\left(455 k^{2}-280 k+43\right)$ with $\tau=5(7 k-2)(100 k-33)$ and $\theta=10(10 k-3)(35 k-$ 11), where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=30 k-10$ and $\lambda_{3}=-(35 k-10)$ with $m_{2}=7\left(455 k^{2}-280 k+43\right)$ and $m_{3}=6\left(455 k^{2}-280 k+43\right)$;
$\left(7^{0}\right) G$ is a strongly regular graph of order $n=35(13 k+4)^{2}$ and degree $r=$ $3\left(455 k^{2}+280 k+43\right)$ with $\tau=315 k^{2}+190 k+28$ and $\theta=15(3 k+1)(7 k+2)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=30 k+9$ and $\lambda_{3}=-(35 k+11)$ with $m_{2}=7\left(455 k^{2}+280 k+43\right)$ and $m_{3}=6\left(455 k^{2}+280 k+43\right) ;$
$\left(\overline{7}^{0}\right) G$ is a strongly regular graph of order $n=35(13 k+4)^{2}$ and degree $r=$ $10\left(455 k^{2}+280 k+43\right)$ with $\tau=5(7 k+2)(100 k+33)$ and $\theta=10(10 k+3)(35 k+$ 11), where $k \geq 0$. Its eigenvalues are $\lambda_{2}=35 k+10$ and $\lambda_{3}=-(30 k+10)$ with $m_{2}=6\left(455 k^{2}+280 k+43\right)$ and $m_{3}=7\left(455 k^{2}+280 k+43\right)$;
$\left(8^{0}\right) G$ is a strongly regular graph of order $n=42(13 k-3)^{2}$ and degree $r=$ $4\left(546 k^{2}-252 k+29\right)$ with $\tau=2\left(336 k^{2}-153 k+17\right)$ and $\theta=12(4 k-1)(14 k-3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=42 k-10$ and $\lambda_{3}=-(36 k-8)$ with $m_{2}=6\left(546 k^{2}-252 k+29\right)$ and $m_{3}=7\left(546 k^{2}-252 k+29\right) ;$
$\left(\overline{8}^{0}\right) G$ is a strongly regular graph of order $n=42(13 k-3)^{2}$ and degree $r=$ $9\left(546 k^{2}-252 k+29\right)$ with $\tau=6\left(567 k^{2}-262 k+30\right)$ and $\theta=18(9 k-2)(21 k-5)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=36 k-9$ and $\lambda_{3}=-(42 k-9)$ with $m_{2}=7\left(546 k^{2}-252 k+29\right)$ and $m_{3}=6\left(546 k^{2}-252 k+29\right) ;$
$\left(9^{0}\right) G$ is a strongly regular graph of order $n=42(13 k+3)^{2}$ and degree $r=$ $4\left(546 k^{2}+252 k+29\right)$ with $\tau=2\left(336 k^{2}+153 k+17\right)$ and $\theta=12(4 k+1)(14 k+3)$,
where $k \geq 0$. Its eigenvalues are $\lambda_{2}=36 k+8$ and $\lambda_{3}=-(42 k+10)$ with $m_{2}=7\left(546 k^{2}+252 k+29\right)$ and $m_{3}=6\left(546 k^{2}+252 k+29\right) ;$
$\left(\overline{9}^{0}\right) G$ is a strongly regular graph of order $n=42(13 k+3)^{2}$ and degree $r=$ $9\left(546 k^{2}+252 k+29\right)$ with $\tau=6\left(567 k^{2}+262 k+30\right)$ and $\theta=18(9 k+2)(21 k+5)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=42 k+9$ and $\lambda_{3}=-(36 k+9)$ with $m_{2}=6\left(546 k^{2}+252 k+29\right)$ and $m_{3}=7\left(546 k^{2}+252 k+29\right) ;$
$\left(10^{0}\right) G$ is a strongly regular graph of order $n=105(13 k-1)^{2}$ and degree $r=$ $5\left(1365 k^{2}-210 k+8\right)$ with $\tau=5\left(525 k^{2}-82 k+3\right)$ and $\theta=5(15 k-1)(35 k-3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=60 k-5$ and $\lambda_{3}=-(70 k-5)$ with $m_{2}=7\left(1365 k^{2}-210 k+8\right)$ and $m_{3}=6\left(1365 k^{2}-210 k+8\right) ;$
$\left(\overline{10}^{0}\right) G$ is a strongly regular graph of order $n=105(13 k-1)^{2}$ and degree $r=$ $8\left(1365 k^{2}-210 k+8\right)$ with $\tau=2\left(3360 k^{2}-515 k+19\right)$ and $\theta=40(12 k-1)(14 k-$ $1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=70 k-6$ and $\lambda_{3}=-(60 k-4)$ with $m_{2}=6\left(1365 k^{2}-210 k+8\right)$ and $m_{3}=7\left(1365 k^{2}-210 k+8\right) ;$
$\left(11^{0}\right) G$ is a strongly regular graph of order $n=105(13 k+1)^{2}$ and degree $r=$ $5\left(1365 k^{2}+210 k+8\right)$ with $\tau=5\left(525 k^{2}+82 k+3\right)$ and $\theta=5(15 k+1)(35 k+3)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=70 k+5$ and $\lambda_{3}=-(60 k+5)$ with $m_{2}=6\left(1365 k^{2}+210 k+8\right)$ and $m_{3}=7\left(1365 k^{2}+210 k+8\right) ;$
$\left(\overline{11}^{0}\right) G$ is a strongly regular graph of order $n=105(13 k+1)^{2}$ and degree $r=$ $8\left(1365 k^{2}+210 k+8\right)$ with $\tau=2\left(3360 k^{2}+515 k+19\right)$ and $\theta=40(12 k+1)(14 k+$ $1)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=60 k+4$ and $\lambda_{3}=-(70 k+6)$ with $m_{2}=7\left(1365 k^{2}+210 k+8\right)$ and $m_{3}=6\left(1365 k^{2}+210 k+8\right) ;$
$\left(12^{0}\right) G$ is a strongly regular graph of order $n=231(13 k-2)^{2}$ and degree $r=$ $2\left(3003 k^{2}-924 k+71\right)$ with $\tau=924 k^{2}-275 k+20$ and $\theta=22(6 k-1)(7 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=77 k-12$ and $\lambda_{3}=-(66 k-10)$ with $m_{2}=6\left(3003 k^{2}-924 k+71\right)$ and $m_{3}=7\left(3003 k^{2}-924 k+71\right)$;
$\left(\overline{12}^{0}\right) G$ is a strongly regular graph of order $n=231(13 k-2)^{2}$ and degree $r=$ $11\left(3003 k^{2}-924 k+71\right)$ with $\tau=11\left(2541 k^{2}-782 k+60\right)$ and $\theta=11(33 k-$ 5) $(77 k-12)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=66 k-11$ and $\lambda_{3}=$ $-(77 k-11)$ with $m_{2}=7\left(3003 k^{2}-924 k+71\right)$ and $m_{3}=6\left(3003 k^{2}-924 k+71\right)$;
$\left(13^{0}\right) G$ is a strongly regular graph of order $n=231(13 k+2)^{2}$ and degree $r=$ $2\left(3003 k^{2}+924 k+71\right)$ with $\tau=924 k^{2}+275 k+20$ and $\theta=22(6 k+1)(7 k+1)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=66 k+10$ and $\lambda_{3}=-(77 k+12)$ with $m_{2}=7\left(3003 k^{2}+924 k+71\right)$ and $m_{3}=6\left(3003 k^{2}+924 k+71\right)$;
$\left(\overline{13}^{0}\right) G$ is a strongly regular graph of order $n=231(13 k+2)^{2}$ and degree $r=$ $11\left(3003 k^{2}+924 k+71\right)$ with $\tau=11\left(2541 k^{2}+782 k+60\right)$ and $\theta=11(33 k+$ 5) $(77 k+12)$, where $k \geq 0$. Its eigenvalues are $\lambda_{2}=77 k+11$ and $\lambda_{3}=$ $-(66 k+11)$ with $m_{2}=6\left(3003 k^{2}+924 k+71\right)$ and $m_{3}=7\left(3003 k^{2}+924 k+71\right)$.

3. CONCLUDING REMARKS

Using Theorems 3 and 4 , it is possible to describe the parameters n, r, τ and θ, for any connected strongly regular graph by using only one parameter k. In the forthcoming paper we shall describe the parameters n, r, τ and θ, for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=\frac{8}{3}, \frac{8}{5}, \frac{8}{7}$.

REFERENCES

[1] Cvetković, D., Doob, M. Sachs, H., "Spectra of graphs - Theory and applications", 3rd revised and enlarged edition, J.A. Barth Verlag, Heidelberg - Leipzi, 1995.
[2] Godsil, C. Royle, G., "Algebraic Graph Theory", Springer-Verlag, New York, 2001.
[3] Lepović, M., "On strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ ", Serdica Mathematical Journal, 37 (2011) 1001-1012.
[4] M. Lepović, "On strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=5,6,7,8$ ", Sarajevo Journal of Mathematics 15 (2) (2019) 209-225.
[5] M. Lepović, "On strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=9,10$ ", submitted.
[6] M. Lepović, "On strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=11,12$ ", submitted.
[7] M. Lepović, "On strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ where $q \in \mathbb{Q}$ ", submitted.

[^0]: We say that a connected or disconnected graph G is integral if its spectrum $\sigma(G)$ consists only of integral values.

