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Abstract: We consider the symmetric traveling salesman problem (TSP) with instances
represented by complete graphs G with distances between cities as edge weights. A com-
plexity index is an invariant of an instance I by which we predict the execution time of
an exact TSP algorithm for I. In the paper [5] we have considered some short edge sub-
graphs of G and defined several new invariants related to their connected components.
Extensive computational experiments with instances on 50 vertices with the uniform
distribution of integer edge weights in the interval [1,100] show that there exists correla-
tion between the sequences of selected invariants and the sequence of execution times of
the well-known TSP Solver Concorde. In this paper we extend these considerations for
instances up to 100 vertices.
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1. INTRODUCTION

A comprehensive survey of work relevant to measuring the difficulty of in-
stances of combinatorial optimization problems, with the focus on six well-known
problems: assignment, traveling salesman, knapsack, bin-packing, graph coloring
and timetabling, is given in [11].

Our approach to this problem uses the notion of a complexity index [4], which
is defined as follows:

Definition. Let A be an exact algorithm for solving an NP-hard combinatorial
optimization problem C and let I be an instance of C of dimension n. A complexity
index of I with respect to A is a real number, computable in polynomial time P (n)
from I, by which we can predict (in a statistical sense) the execution time of A for
I.

A complexity index of an instance I is an invariant of I. An invariant of an
instance can serve as a complexity index with respect to several algorithms for
solving the considered problem but, of course, with different efficiencies. The effi-
ciency of a complexity index has to be statistically estimated using the correlation
between the index value and the execution time of the algorithm A. One can use
the standard correlation coefficient (Pearson) or the rank correlation coefficient
(Spearman). Also, one should specify the number of tested instances and the way
they are generated.

The coefficient of linear correlation for two sequences of length s is defined by

CBC =
1

√
vBvC

s∑
i=1

(bi −mB)(ci −mC) (1)

where bi, ci,mB ,mC are values and mean values of the corresponding sequences B

and C, respectively, and vB =
s∑

i=1

(bi −mB)2, vC =
s∑

i=1

(ci −mC)2. The Spearman

correlation coefficient SBC is defined as linear correlation coefficient between the
ranked variables. For each bi, ci, their ranks rgbi, rgci are determined and we have

SBC =
1

√
vrg

B
vrg

C

s∑
i=1

(rgbi −mrg
B

)(rgci −mrg
C

) (2)

where rgB = (rgbi) and rgC = (rgci).
We consider the symmetric traveling salesman problem (TSP) with instances

represented by complete graphs G, where distances between cities are edge weights.
Several complexity indices for the TSP with respect to exact branch and bound

algorithms have been studied in [8], [6]. For earlier references see [7], [8].
In [5] we have defined several new invariants related to connected components

of short edge subgraphs of G as well as to the solution of the assignment problem.
Experiments conduced on instances of 50 vertices with the uniform distribution
of integer edge weights in the interval [1,100] show that there exists correlation



D. Cvetković, et al. / Complexity indices for the TSP continued 473

between the sequences of selected invariants and the sequence of execution times
of TSP solver Concorde. Another application of the notion of a complexity index
is given in [9], where the authors extend the concept of conditioning in integer
programming [12] to the concept of a complexity index for the multidimensional
knapsack problem (MKP) that corresponds to the minimum and maximum eigen-
value of a Dikin matrix placed in the centre of a polyhedron defined by MKP
constraints. The experiments with instances from the OR-library and MIPLIB
show medium to strong correlation between the proposed indices and execution
times of branch and bound algorithms.

In this paper we extend the analysis considerations from [5] to TSP instances
with up to 100 vertices. The results of extensive computational experiments on
randomly generated instances show that complexity indices based on the solution
of the assignment problem perform in a similar way for 70 and 100 vertices as
for 50, while indices based on connected components of short edge subgraphs
are inefficient for 70 and 100 vertices . We also investigate whether Generalized
Peterson graphs, known as hard instances for the TSP, can be recognized by the
assignment problem indices.

2. EXPERIMENTS

We first give some details from the paper [5].

We managed to obtain very good results with the Concorde TSP Solver and
instances with 50 vertices. This is the greatest number of vertices ever used in the
literature regarding this type of experiments.

For the dimension n = 50 we have generated randomly two sets S(1), and
S(2), each consisting of hundred TSP instances with integer weights uniformly
distributed in interval [1, 100]. Since Concorde execution times slightly vary when
the same instance is run several times, we recorded the average execution time
for five executions of the same instance. The corresponding standard deviations
are reasonably small. The average execution time for instances in set S(1) vary
between 26 and 872 milliseconds, and for instances in set S(2) from 24 and 1206
milliseconds.

First, we observed the short edge subgraph coming out from the solution of the
corresponding assignment problem, obtained from the integer linear programming
formulation of the TSP when subtour elimination constraints are omitted. In this
subgraph all components are cycles. The following invariants of this subgraph
were considered:

I1: the product of the numbers of vertices of components
I2: the number of components.

Linear and Spearman correlation coefficients between values of complexity in-
dices I1 and I2 for instances in sets S(1) and S(2), and Concorde execution times
are given in Table 1.

Second, we observed the short edge subgraph consisting of edges of length 1 or
2. In the theory of random graphs, such subgraphs are random graphs of Erdős-
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Table 1: Correlation coefficients related to the assignment problem

Linear correlation Spearman correlation

Complexity
indices Set S(1) Set S(2) Set S(1) Set S(2)

I1 0.24 0.11 0.42 0.33
I2 0.25 0.23 0.40 0.33

Rényi type with probability p = 0.02 for any two vertices to be connected by an
edge.

We considered, among other things, the following six invariants for these sub-
graphs:

J1: the product of the numbers of vertices of the components
J2: the product of the squares of the numbers of vertices of the components
J3: the product of the numbers of vertices in the longest self-avoiding (cycle

free) paths in the components
J4: the product over all components of the product of the number of vertices

in the component and the length of the longest self-avoiding path in the component
(in the case that the length is equal to 0 we put 1 instead)

J5: the product over all components of the product of the number of vertices
in the component, the number of the longest self-avoiding paths in the component
and their length (in the case that the length is equal to 0 we put 1 instead)

J6: the product over all components of the square of the length of the longest
self-avoiding path in the component increased by one.

We see that in all cases there is no contribution of isolated vertices (i.e. trivial
components) to the value of the invariant. Suppose that the components of the
short edge subgraph are indexed by i and consider the i-th component. Let ki be
the number of vertices, di the length of the longest self-avoiding path and Si the
number of such paths in the i-th component. The following formulas hold:

J1 =
∏
i

ki, J2 =
∏
i

k2i , J3 =
∏
i

di, (3)

J4 =
∏
i

kidi, J5 =
∏
i

kiSidi, J6 =
∏
i

(di + 1)2, (4)

where
∏
i

denotes the product over all non-trivial components of the subgraph.

Linear correlation coefficients between values of complexity indices J1 − J6
for instances in sets S(1) and S(2), and Concorde execution times vary between
0.46 and 0.60. This represents a moderate but for our purposes very important
correlation.

Now, we describe new experiments.



D. Cvetković, et al. / Complexity indices for the TSP continued 475

Continuing in the same spirit, we have randomly generated two sets S(3) and
S(4) of 100 instances on 70 vertices. Linear and Spearman correlation coefficients
between values of complexity indices for these instances and Concorde execution
times are given in Table 2.

Table 2: Correlation coefficients for sets S(3) and S(4) with n = 70 vertices

Linear correlation Spearman correlation

Complexity
indices Set S(3) Set S(4) Set S(3) Set S(4)

I1 -0.08 0.01 0.32 0.24
I2 0.12 0.17 0.31 0.27

Indices J1−J6 are quite inefficient and therefore, they are not included in this
table. In most of the cases, the corresponding correlation coefficients were below
or around 0.10. Note that we had difficulties in calculating parameters di and Si

because of the large time and space complexity of the applied algorithms.

In the end, we have randomly generated two sets S(5) and S(6) of 100 instances
on 100 vertices to see whether the effects appearing for 50 vertices are also present
in this case. Indices I1 and I2 perform in a similar way (see Table 3). Indices
J1, . . . , J6 appear to be inefficient also for this dimension. This is in accordance
with the conclusion, stated in [5], that correlation coefficients of the complexity
indices decrease as the number of vertices increases (see also Section 3 here).

We turn to the indices based on the assignment problem from Table 3.

Table 3: Correlation coefficients for sets S(5) and S(6) with n = 100 vertices

Linear correlation Spearman correlation

Complexity
indices Set S(5) Set S(6) Set S(5) Set S(6)

I1 0.30 0.15 0.11 0.11
I2 0.23 0.04 0.15 0.17

Motivated by the efficiency of indices I1 and I2, we extended the set of in-
variants related to the short edge subgraph coming out from the solution to the
corresponding assignment problem:

I3: the number of vertices in the largest component,
I4: the number of vertices in the largest component divided by the total

number of components,
I5: the reciprocal of I1,
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I6: the number of vertices in the largest component divided by the number
of vertices in the second largest component. If the number of components is equal
to one, we use I3,

I7: the number of components multiplied by I6.
Suppose that C1,...,Cm are the components of the short edge subgraph obtained

from the solution to the assignment problem such that k1 ≥ k2 ≥ ... ≥ km, where
ki represents the number of vertices in the component Ci, 1 ≤ i ≤ m. The
following formulas hold:

I3 = k1, I4 =
I3
m

=
k1
m

, I5 =
1

I1
=

1
m∏
i=1

ki

,

I6 =

{
k1

k2
, if m > 1,

k1, if m = 1
, I7 = m · I6,

Linear and Spearman correlation coefficients between values of these complex-
ity indices for instances in sets S(1) - S(6) and Concorde execution times are given
in Table 4.

We see that complexity indices of this type are more stable, as the number of
vertices increases, than the other considered indices.

3. BEHAVIOR OF COMPLEXITY INDICES AS THE NUMBER
OF VERTICES INCREASES

An important empirical conclusion follows from all experiments (both current
and the past ones): Correlation coefficients for all considered complexity indices
decrease as the number of vertices increases.

Most of the complexity indices considered are based on some kind of short edge
subgraphs. However, we have to distinguish between indices based on the solution
to an optimization problem (e.g. the assignment problem) and those based on
subgraphs which literally contain edges with the smallest weights.

Complexity indices based on the assignment problem appear to be stable as the
number of vertices increases as we can see from Table 4 and the previous tables.
Better performance of these indices is based on the fact that the corresponding
short edge subgraph is not defined at the beginning. It is rather determined in
the course of an optimization problem. In this way, such subgraphs could contain
relatively long edges.

Similar effects appear with complexity indices based on the minimum spanning
tree [7], [8].

The conclusion on decreasing complexity indices of the second type of short
edge subgraphs, i.e., the subgraphs which literally contain edges with the smallest
weights, is contained in the previous literature, especially in [5]. Indeed, if a short
edge subgraph S, on which a complexity index is based, contains no more than cn
edges (n the number of vertices of the TSP instance, c a constant), then the ratio
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Table 4: Correlation coefficients for the new complexity indices related to solutions to the as-
signment problem for instances with n = 50, 70, 100 vertices

Linear correlation Spearman correlation

Complexity
indices Set S(1) Set S(2) Set S(1) Set S(2)

I3 -0.36 -0.24 -0.42 -0.32
I4 -0.32 -0.23 -0.39 -0.31
I5 -0.33 -0.23 -0.39 -0.32
I6 -0.34 -0.22 -0.45 -0.29
I7 -0.38 -0.23 -0.45 -0.25

Set S(3) Set S(4) Set S(3) Set S(4)

I3 -0.15 -0.20 -0.32 -0.25
I4 -0.26 -0.25 -0.32 -0.23
I5 -0.27 -0.26 -0.32 -0.23
I6 -0.25 -0.27 -0.33 -0.26
I7 -0.21 -0.28 -0.34 -0.27

Set S(5) Set S(6) Set S(5) Set S(6)

I3 -0.20 -0.21 -0.10 -0.10
I4 -0.22 -0.15 -0.11 -0.11
I5 -0.22 -0.15 -0.10 -0.10
I6 -0.22 -0.16 -0.10 -0.11
I7 -0.22 -0.19 -0.07 -0.10

cn/
(
n
2

)
= 2c/(n − 1) (the part of all the edges which is contained in S) goes to 0

as n increases. Hence, the information on the structure of the instance contained
in S is expected to disappear.

The assumed upper bound cn for the number of edges in a short edge subgraph
means, in fact, that mean value of this number in a random graph of considered
type can be majorized in this way. A simplified example is the case when the short
edge subgraph is formed by taking just n shortest edges.

The case of invariants J1 - J6 is very specific. The corresponding short edge
subgraphs contain in average 2% of all edges, independently of the number of
vertices. The explanation of the fact that the efficiency of these indices go down
as the number of vertices increases should be looked for in the theory of random
graphs. Some details in this direction are given in [5]. Here we mention that the
corresponding short edge subgraphs for the cases n = 50, 70, 100 contain in average
24.5 , 48.3 and 99 edges, respectively.
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4. HARD CASES

The paper [1] describes several hard cases for the Traveling salesman problem,
in particular, Generalized Petersen graphs (GPGs).

We have investigated whether our technique with complexity indices can rec-
ognize GPGs as difficult instances, i.e. instances which require a long time to be
solved.

The Generalized Petersen graph family was first studied by Coxeter in 1950
[3] and was named in 1969 by Watkins [13]. In Watkin’s notation the Gener-
alized Petersen graph GP (p, k)(p ≥ 3; 1 ≤ k < p/2) has n = 2p vertices and
m = 3p edges, with vertex set V = {ui, vi|0 ≤ i ≤ p − 1}, and edge set
E = {{ui, ui+1}, {ui, vi}, {vi, vi+k}|0 ≤ i ≤ p− 1}, where vertex indices are taken
modulo p. Certain choices of p and k result in graphs with special characteristics,
in particular, graphs with a high degree of symmetry and known number of Hamil-
tonian cycles. The following theorem from [10] gives the number of Hamiltonian
cycles of GP (p, 2).

Theorem. Let Fp denote the Fibonacci number defined by F0 = 0, F1 = 1, Fp =
Fp−1 + Fp−2, p ≥ 2. For p ≥ 3, the number of Hamiltonian cycles in GP (p, 2)
depends on the congruence class of p (mod 6).

For p ≡ 0 or 2(mod 6) there are 2Fp/2 − 2Fp/2−2 − 2 Hamiltonian cycles.
For p ≡ 1(mod 6) there are n Hamiltonian cycles.
For p ≡ 3(mod 6) there are 3 Hamiltonian cycles.
For p ≡ 4(mod 6) there are p + 2Fp/2+2 − 2Fp/2−2 − 2 Hamiltonian cycles.
For p ≡ 5(mod 6) there are 0 Hamiltonian cycles.

Note that for p ≡ 5(mod 6), graph GP (p, 2) is non-Hamiltonian, but it has been
proved in [2] that it is hypohamiltonian and hence, the addition of any edge to
the graph will introduce Hamiltonian cycles. It has been noted in [1] that classes
GP (p, 2) with p ≡ 1(mod 6), p ≡ 3(mod 6), and p ≡ 5(mod 6) constitute very
difficult examples for most TSP algorithms, including Concorde, Lin-Kernighan
and Snakes and Ladders, even when the size of the graph is small. That motivated
the investigation of a possible application of complexity indices to class GP (p, 2).

In our experiments the distance matrix that corresponds to GP (p, 2) is formed
as follows: the distance between any two cities i and j is set equal to 0 if the edge
(i, j) exists in GP (p, 2) and equal to 1 otherwise, diagonal entries being equal to
0. The length of the optimal tour will be 1 for p ≡ 5(mod 6) since GP (p, 2) is
hypohamiltonian and the optimal tour has to contain one edge with weight 1. In
all the other cases, the optimal tour of length 0 will be contained in GP (p, 2). Since
Concorde execution times slightly vary when the same instance is run several times,
we recorded the average execution time for five executions of the same instance.
Table 5 gives the Concorde average execution times in seconds for GP (p, 2) for
25 ≤ p ≤ 50.
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Table 5: Performance of Concorde on Generalized Petersen graphs.

n p t

50 25 1 (mod 6) 0.052
52 26 2 (mod 6) 0.056
54 27 3 (mod 6) 0.677
56 28 4 (mod 6) 0.046
58 29 5 (mod 6) 80.830
60 30 0 (mod 6) 0.056
62 31 1 (mod 6) 0.060
64 32 2 (mod 6) 0.056
66 33 3 (mod 6) 7.784
68 34 4 (mod 6) 0.282
70 35 5 (mod 6) 609.536
72 36 0 (mod 6) 0.064
74 37 1 (mod 6) 12.218
76 38 2 (mod 6) 0.058
78 39 3 (mod 6) 121.098
80 40 4 (mod 6) 0.068
82 41 5 (mod 6) 2400*
84 42 0 (mod 6) 0.068
86 43 1 (mod 6) 10.006
88 44 2 (mod 6) 0.084
90 45 3 (mod 6) 319.743
92 46 4 (mod 6) 0.142
94 47 5 (mod 6) 6000*
96 48 0 (mod 6) 0.080
98 49 1 (mod 6) 150.294
100 50 2 (mod 6) 0.114

Sign ‘*’ next to a number means the reported failures due to the inability of
Concorde to find the optimal tour within a designated number of seconds.

Table 5 shows that among the difficult classes the hardest is GP (p, 2) with
p ≡ 5(mod 6), followed by GP (p, 2) with p ≡ 3(mod 6) and p ≡ 1(mod 6).
According to the Theorem these classes are characterized by a small number of
Hamiltonian cycles (0 for p ≡ 5(mod 6), 3 for p ≡ 3(mod 6) and n for p ≡ 1(mod 6),
which is a probable cause of difficulties for Concorde.

Our experiments are related to TSP instances on 50, 70, and 100 vertices.
However, GPG instances on 50 and 100 vertices are easy, and therefore we have
to concentrate on the case of n = 2p = 70 vertices, where we do have difficult
instances.

To check whether our complexity indices can recognize GP (35, 2) as a diffi-
cult instance, we have calculated invariants I1 - I7 for twenty corresponding TSP
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instances generated randomly in the following way. The distance matrices are ob-
tained by replacing zeros in the adjacency matrix of Generalized Petersen graph
with randomly generated numbers from the interval [2, 100].

The distribution of calculated invariants in the intervals between lower and
upper bounds for these invariants in both series S(3) and S(4) is almost uniform.
This shows that complexity indices based on the assignment problem are not strong
enough to recognize the Generalized Petersen graph on 70 vertices as a difficult
instance for TSP.

If we use the interval [1, 100] instead of [2, 100] in the generating process, we
get easy cases! Namely, with high probability we generate at least one number
1 and the corresponding edge closes a Hamiltonian cycle with edges of GP (35, 2)
since GP (35, 2) is hypohamiltonian. This cycle of length 70 will be quickly found
by Concorde, while in the case of interval [2, 100], the optimal length is equal to
71 since, almost always, there exists an edge of length 2 which has to appear in
the optimal Hamiltonian cycle.

We have also generated twenty such easy cases of GP (35, 2) and calculated the
corresponding invariants I1 - I7. It turns out that hard and easy cases of GP (35, 2)
can readily be distinguished by these complexity indices.

In order to make this statement more formal, we have formed a set of 10 hard
and 10 easy instances of GP (35, 2) and calculated linear correlation coefficient
between the sequences of Concorde execution times (varying from 435,35 to 693,02
seconds for hard instances and from 0,156 to 0,236 seconds for easy ones) and the
values of complexity index I2 . The value of the coefficient of about 0.60 for this
correlation enables the statement that hard and easy instances of GP (35, 2) can
be distinguished by index I2. Similar results are obtained for other considered
indices based on the assignment problem.

The obtained values of the linear correlation coefficients read: 0.2822 for I1,
0.6085 for I2, -0.3853 for I3, -0.4874 for I4, -0.3872 for I5, -0.3300 for I6, -0.1812
for I7.

Calculated values of complexity indices for twenty hard and twenty easy in-
stances of GP (35, 2), as well as above mentioned upper and lower bounds, for
indices in sets S(3) and S(4) are not presented here.

5. CONCLUSION

We show that complexity indices for TSP based on the assignment problem
have moderate correlation coefficients but remain stable in all three considered
cases: 50, 70, and 100 vertices. We see that in most of the cases index, I2 (the
number of components in the solution of the assignment problem) behaves well.
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