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1. INTRODUCTION

Coal is one of the major source for total energy supply in the world. Rapid changes in
the coal market and the intensification of global competition compel coal manufacturers
and coal traders to re-evaluate their business and corporate strategies [1]. In order to
hedge against business risks, many companies are planning to rely on operations research
methods or already use them.

Despite the green transition, the international and internal coal trade has constantly
been growing, For instance, according to analytical reports, China (a country with one
of the fastest growing economics in the world) saw the highest imports of coking coal
in 2024 at 121.7 million tons. It rose by 19.7% compared to 2023. At the same time,
Mongolia and Russia became one of the key coal exporters to China in 2023 supplying
53.9 million tons (+5.3% to previous year) and 30.2 million tons (+7.7%), respectively.

Following the mentioned recent trends, we introduce a new bilevel optimization model
to govern interaction between a coal importer (for instance, China) and coal manufacturers-
exporters (Mongolia, Russia, and other countries) in the importer’s coal market. The goal
of the upper level player is to satisfy the demand for coal in each time period, minimiz-
ing the purchase and storage costs. At the lower level, each supplier company aims to
maximize its profit by varying the volume of coal production depending on the current
purchase prices.

It is well-known that bilevel optimization is a conventional tool for modeling hierar-
chical conflicts involving players with different decision-making powers [2, 3]. This is
appealing for modeling real-world problems, but it also makes the optimization models
hard to solve. It is also known that bilevel optimization problems involving integer vari-
ables become even more complicated [3]. Therefore, the development of efficient and
effective numerical methods for solving diverse bilevel problems remains a challenge in
modern mathematical optimization theory [4]. In this paper, we propose a new bilevel
model that establish competitions between coal manufacturers and coal exporters who are
supposed to have balancing stockpile facilities. We proposed a solution approach for the
introduced bilevel problem resting upon the following two-stage approach:

• Considering the equivalence between bilevel and nonconvex optimization problems
(in the sense of equivalence of their global optimal solutions), one can reduce a
bilevel problem to a single-level one [2, 4].

• Applying the Global Search Theory (GST) developed by A.S. Strekalovsky, one
can solve the resulting nonconvex problem by efficient numerical methods relying
on modern convex optimization methods and software [5, 6].

The paper has the following structure. Section 2 describes the problem formulation,
which is reduced to quadratically constrained nonconvex single-level problem in Section
3. In Section 4, we propose and discuss two different approaches to solving the problem:
first one is based on the reverse-convex programming [5, 7, 8, 9], whereas the second
one relies on the theory and methods of convex maximization [5, 10]. We discuss the
advantages and disadvantages of the proposed approaches in Section 5.
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2. PROBLEM STATEMENT

We consider a bilevel optimization problem where the upper level player is a importer
company (country), whereas the lower level players are coal manufacturers.

Let T be a set of planning periods, T = {1,2, . . . ,m}, I be a set of coal manufacturers,
I = {1,2, . . . ,n}. Let us introduce the following variables:

• pt is the unit purchase cost (price) in period t set by the upper level player for
manufacturers;

• xit is the amount of coal offered by manufacturer i ∈ I (a lower level player) at
period t ∈ T ;

• st are inventory variable defining the stock of the importer (the upper level player)
at the end of period t ∈ T , s0 = 0;

• yt is a binary variable that takes 1 if the upper level player imports coal in period
t ∈ T , and 0 otherwise.

It should be noted that the importer sets the same price pt , t ∈ T for all the manufacturers.
The upper level parameters are unit storage cost ht ≥ 0, import cost ct ≥ 0 (e.g. think
of currency exchange rate fluctuations over period T ), and demand in coal dt > 0 in pe-
riod t ∈ T . Let us denote the total demand (starting from period t until the end of the
planning horizon m) as Dt = ∑

m
j=t d j. We also suppose that purchase initiation is a quite

complicated process governed by the local laws, hence the number of purchases over the
planning horizon T may not exceed N.

Note that if the price pt is not competitive, a manufacturer may refuse offering coal at
this period. Otherwise, the amount of coal offered by each manufacturer at each period is
bounded by xi. We suppose that the production cost of manufacturer i ∈ I is defined by
convex quadratic function φ(·).

With these notations, the aforementioned competition may be written as the following
mixed integer bilevel optimization problem:

∑
t∈T

(
pt ∑

i∈I
xit +htst + ctyt

)
↓ min

p,s,y,x
, (1)

st−1 +∑
i∈I

xit = dt + st , s0 = 0, t ∈ T , (2)

∑
i∈I

xit ≤ Dtmyt , t ∈ T , (3)

∑
t∈T

yt ≤ N, (4)

pt ≥ 0, st ≥ 0, yt ∈ {0,1}, t ∈ T , (5)
xit ∈ Sol(Fi(p)), i ∈ I, t ∈ T , (6)

i.e. xit is the optimal solution of the following lower level problem:

∑
t∈T

[ptxit −φi(xit)] ↑ max
x

,

0 ≤ xit ≤ xi, t ∈ T,

 (Fi(p))

where φi(x) = aix2 + bix defines quadratic costs (ai > 0, i ∈ I). Let us denote the intro-
duced bilevel problem as (BP).
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The goal of the importer (upper level player) is to satisfy the demand in each time
period, minimizing the overall costs related to purchasing, storing, and importing coal.
The upper level problem can be viewed as a variation of the uncapacitated lot-sizing
problem [11], where equations (2) are balance constraints for every time period and the
inequalities (3) define the upper bound constraints to amount of imported coal. The con-
straint (4) limits the number of coal purchases.

The manufacturers aim to maximize their own profit over all time periods by varying
their amounts of offered coal. The latter depends on the purchase prices defined by the
upper level player. Note that the lower-level decision do not involve multiple criteria op-
timization, since each manufacturer operates independently, trying to maximize its own
profit. Also, one can easily see that each lower level problem has a unique optimal solu-
tion, so there is no need to distinguish between optimistic or pessimistic solutions [2] in
the bilevel problem (BP).

For every given pt , t ∈ T , the lower level problem (Fi(p)), i ∈ I, tuns out to be
a concave quadratic maximization which is a convex problem. One can also note that
the upper level objective function is bilinear, and the lower level has a general quadratic
structure with a bilinear term in the objective function. All constraints at both levels are
linear, but the upper level problem turns out to be mixed integer programming problem
due to the binary variables yt . This fact adds additional difficulty to the problem (BP).

3. REDUCTION TO SINGLE-LEVEL NONCONVEX CONTINUOUS
PROBLEM

Usually, the transformation of a bilevel optimization problem into a single-level one
is implemented by applying the traditional KKT-approach, i.e. the lower level convex
problem is replaced with its optimality conditions [2, 12, 13, 14, 15]. In our case, it
can be done straightforwardly as the optimization problems at the lower level depend
only of their own variables xi = (xi1, . . . ,xit , . . . ,xim) for every given upper level variables
p = (p1, . . . , pt , . . . , pm). Thus, it is possible to obtain an explicit solution to the problems
(Fi(p)), i ∈ I, analytically.

Let us fix the variables pt for all t ∈ T (pt := p̂t ) and consider the problem (Fi(p̂)),
such that ψ(xit) = p̂txit −aix2

it −bixit .

Proposition 1. Let x̂i be the solution to the problem (Fi(p̂)). Then only one of the fol-
lowing alternatives takes place for all i ∈ I, t ∈ T :

(a) x̂it = 0; (b) x̂it =
p̂t −bi

2ai
; (c) x̂it = xi.

Proof. Since ai > 0, i ∈ I, the objective function ∑
t∈T

∑
i∈I

[
−aix2

it +(p̂t −bi)xit
]

of the prob-

lem (Fi(p̂)) is concave, and hence (Fi(p̂)) is a convex optimization problem.
The first-order optimality conditions imply p̂t − 2aixit − bi = 0. Therefore, xit =

p̂t −bi

2ai
, i ∈ I, t ∈ T . As the produced amount xit lies within [0,xi] ∀i ∈ I, we can get

the optimal solution to (Fi(p̂)) as

x̂it =

 0, if xit < 0,
xit , if 0 ≤ xit ≤ xi,
xi, if xit > xi,

(7)
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where the upper bounds xi remain unchanged for any period t ∈ T .

Remark 2. As a consequence of Proposition 1, we can refine the bounds for the upper
level unit price variables pt , t ∈ T :

pt := bi ≤ pt ≤ 2aixi +bi =: pt , (8)

Furthermore, the dependence between the unit purchase price and the amount of coal
offered can be defined as

pt = 2aixit +bi. (9)

Substituting the variables pt in the objective function (1) of the upper level problem,
according to the equalities (9), we can cast the following single-level optimization prob-
lem equivalent to the bilevel problem (BP):

f (s,y,x) = ∑
t∈T

∑
i∈I

[
2qix2

it + cixit
]
+ ∑

t∈T
htst + ∑

t∈T
ctyt ↓ min

s,y,x
, (10)

st−1 +∑
i∈I

xit = dt + st , s0 = 0, st ≥ 0, t ∈ T , (11)

∑
i∈I

xit ≤ Dtmyt , t ∈ T , (12)

∑
t∈T

yt ≤ N, (13)

0 ≤ xit ≤ xi, i ∈ I, t ∈ T , (14)
yt ∈ {0,1}, t ∈ T . (15)

Despite the objective function of the problem (10)–(15) is a convex (ai > 0) quadratic
function, the resulted optimization problem is non-convex (mixed integer program).

Let us reduce the integer program to a continuous non-convex problem by replacing
the binary constraints (15) for decision variables y with the following equivalent con-
straints [7]:

y2
t − yt ≥ 0, t ∈ T, (16)

0 ≤ yt ≤ 1, t ∈ T. (17)

Summing up all the constraints (16) by index t, we obtain

0 ≤
m

∑
t=1

(
y2

t − yt
)
=

m

∑
t=1

([
y2

t − yt +
1
4

]
− 1

4

)
=
∥∥∥y− e

2

∥∥∥2
− m

4
, (18)

where e = (1, . . . ,1)T ∈Rm. It can readily be seen that the inequality (18) holds iff all the
variables yt take integer values 0 or 1.



6 T. Gruzdeva, A. Ushakov / Nonconvex optimization approach to bilevel problem ...

Therefore, the problem (10)–(15) is reduced to the problem of minimizing a convex
objective function over a nonconvex feasible set, i.e.

f (s,y,x) ↓ min
s,y,x

, (s,y,x) ∈ S ,

h(y) =
∥∥∥y− e

2

∥∥∥2
− m

4
≥ 0,

 (19)

where S ⊂ IR(2+n)m is a convex set defined by constraints (11)–(14), (17). One can see
that the function h(·) in the problem (19) is also convex function, and due to h(y) ≥ 0,
such problem is often called as the reverse-convex program [5, 8, 9].

Thus, the problem (19) can be considered as a particular case of a general DC opti-
mization problem [16, 17], and we can apply the Global Search Theory-based approach
to develop a solution algorithm.

Once the solution of the problem (19) is obtained, it is possible to determine the op-
timal prices for the corresponding amounts of offered coal for all periods t using formula
(9).

4. SOLUTION APPROACHES

The core of Global Search Theory (GST) for DC optimization problems is the Global
Optimality Conditions (GOCs) developed by A.S. Strekalovsky [5, 6, 16, 17]. They allow
producing a minimizing sequence for any DC optimization problems [12, 13, 14, 15, 18,
19, 20, 21, 22, 23], since they bear the so-called constructive (algorithmic) property. It
induces the procedures of escaping local, stationary, or critical points. In other words,
when a point under study is not a global solution, there exists a possibility to violate the
GOCs, and, as a consequence, one can improve the point in question with respect to the
objective function value. The solution approach based on the GST consists of the two
main components:

1. Special local search, which provides an approximate local or critical point and is
based on solving the sequence of linearized problems.

2. Procedure of escaping critical points which is based on the GOCs.
We suppose to address the problem (19) folowing two directions: the first one is based

on viewing it as the reverse-convex program (19), while the second one is to consider it as
a convex maximization program. The latter is followed from the corresponding reduction
theorem [8].

4.1. Reverse-convex programming

The so-called basic nonconvexity of the problem (19) follows from the fact that its
feasible set is non-convex. To implement the GST-based solution approach, we at first
have to design a local search method (LSM) for the reverse-convex problem [5, 24, 25, 26]
to find critical points of the problem (19).

One proper variant of the LSM for the reverse-convex problem is the modification
(LSM-RCP) [24] of the method proposed by Rosen [27]. In this local search procedure,
the linearization of the basic nonconvex terms in the constraints is combined with a free
descent procedure. Our computational experience [24] shows that LSM-RCP performs
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better on the problems with linear objective function and quadratic reverse-convex con-
straint. It is exactly the problem we want to solve here.

The LSM-RCP is based on solving the following linearized (at some ŷ :
(ŝ, ŷ, x̂) ∈ S ) problem:

f (s,y,x) ↓ min
s,y,x

, (s,y,x) ∈ S ,

⟨∇h(ŷ),y− ŷ⟩+h(ŷ)≥ 0,

}
(20)

where ∇t h(y) = 2yt − 1, t ∈ T . Note that if ŷt ∈ {0,1} ∀t ∈ T , then h(ŷ) = 0. The
problem (20) is obviously a convex problem and can be solved by any convex optimization
method [28, 29] or an appropriate optimization solver.

Proposition 3. In any solution (s,y,x) to the linearized problem (20), y turns out to be
binary.

Proof. Due to the convexity of function h(·) defined by (18), the following chain holds:

0 ≤ ⟨∇h(ŷ),y− ŷ⟩+h(ŷ)≤ h(y)−h(ŷ)+h(ŷ) = h(y).

Since y ∈ [0,1]m, the inequality h(y)≥ 0 implies y ∈ {0,1}m.

Remark 4. Note that the problem (20) has the so-called non-full-dimensional noncon-
vexity, hence only the variable y0 is required to construct the first linearized problem.
Nevertheless, it should be selected so that triple (s0,y0,x0) is feasible and

S ∩{y ∈ IRm | ⟨∇h(y0),y− y0⟩+h(y0)≥ 0} ̸= /0.

In terms of the problem (19), the LSM-RCP consists of the following two procedures:
Procedure 1 begins with the point (ŝ, ŷ, x̂) ∈ S, h(ŷ) ≥ 0, and constructs a point z̃ =

(s̃, ỹ, x̃) such that z̃ ∈ S : h(ỹ) = 0, f (s̃, ỹ, x̃)≤ f (ŝ, ŷ, x̂).
Procedure 2 starts from a feasible point z̃ ∈ S, h(ỹ) = 0, and produces a sequence {ul}

such that

ul = (sl ,yl ,xl) ∈ S : h(yl)≥ 0, f (s̃, ỹ, x̃)≤ f (ŝ, ŷ, x̂), l = 0,1,2, . . . , (21)

where u0 := z̃. The sequence {ul} is formed according to the following rule. If the point
ul , l ≥ 0, satisfies (21), then the next point ul+1 is constructed as an approximate solution
of the convex problem (20), so that the following inequality holds

f (sl+1,yl+1,xl+1)+ τl ≤ inf
(s,y,x)

{ f (s,y,x) | (s,y,x) ∈ S,⟨∇h(yl),y− yl⟩+h(yl)≥ 0},

where {τl} is a numerical sequence, τl > 0, l = 0,1,2, . . . ,
∞

∑
l=1

τl <+∞.

An approximate solution to the linearized (convex) problem (20) defines a critical
point of the problem (19) which can be obtained by LSM-RCP with a given accuracy
τ > 0 using the following stopping criterion [5, 24, 25]:

h(yl)≤ τ. (22)
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To escape from a critical points provided by LSM-RCP, one may design an algorithm
based on the following Global Search Scheme (GSS) for solving reverse-convex prob-
lems (19) [5, 26, 30].

Suppose that the starting point (s0,y0,x0)∈S ⊂IR(2+n)m and the numerical sequences
{τk}, {δk} : τk,δk > 0, k = 1,2, . . . ; τk ↓ 0, δk ↓ 0 (k → ∞) are given.

Global search scheme for the reverse-convex problem (19)

Step 0. Set k := 0, ẑk := z0 = (s0,y0,x0).
Step 1. Start from the point ẑk and, using the LSM-RCP, find a critical point

zk := (sk,yk,xk) : h(yk)≤ τk. Calculate ζk := f (sk,yk,xk).
Step 2. Construct a finite approximation

Rk = {v1, . . . ,vNk | v j ∈ IRm, h(v j) = 0, j = 1, . . . ,Nk}

of the level surface {h(y) = 0} of the function h(·).
Step 3. For all j = 1, . . . ,Nk find a δk-solution u j := (s j,y j,x j) ∈ IR(2+n)m

to the following linearized problem:

⟨∇h(v j),y⟩ ↑ max, (s,y,x) ∈ S , f (s,y,x)≤ ζk. (23)

Step 4. For all j = 1, . . . ,Nk find a δk-solution w j ∈ IRm to the following
level (h(·) = 0) problem:

⟨∇h(w),y j −w⟩ ↑ max
w

, h(w) = 0. (24)

Step 5. Compute the value

ηk = ⟨∇h(w j∗),y j∗−w j∗⟩= max
1≤ j≤Nk

⟨∇h(w j),y j −w j⟩

and construct the point u j∗ = (s j,w j∗,x j).
Step 6. If ηk ≥ 0, then set ẑk+1 := u j∗, k := k+1, and go to Step 1.
Step 7. If ηk < 0, then set ẑk+1 := zk, k := k+1, and go to Step 1.
Step 8. If the solution zk is of sufficient accuracy τk, then stop:

(sk,yk,xk) is the best solution found.

Remark 5. The auxiliary problems in Steps 3 and 4 are simple and may easily be solved.
For example, in case of the quadratic function h(·), the level problem (24) can be analyt-
ically solved applying the KKT approach [5, 30].

Regarding the approximation of the level surface of the convex function h(·) (Step 2),
there are many ways and techniques to build it. For instance, the approximation Rk can
be constructed using the basis (unit) vectors of the Euclidean space [5, 30]:

vi = yk +µiei, i = 1, . . . ,Nk. (25)

The search of µi is simple and, in fact, analytical (that is, it may be reduced to solving the
quadratic equation of one variable µi): h(·) = 0.
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Being a key step of the global search, constructing a ”good” approximation Rk of the
level surface h(y) = 0 on Step 2 allows one to escape from any stationary point and finally
obtain a point which turns out to be an approximate global solution [12, 13, 14, 15, 18,
19, 20, 21, 22, 23, 30]. Moreover, the concept of (”good”) resolving approximation plays
a crucial role for the proof of convergence of the GSS. In other words, the sequence {zk},
zk := (sk,yk,xk), generated by the GSS turns out to be minimizing for the problem (19),
subject to natural regularity conditions and the assumptions that the linearized problem
and level problem can efficiently be solved. (see Steps 3, 4 of the GSS) [5, 26]. Further-
more, every point z∗ of the sequence {zk} yields the infimum of f (·) over the feasible set
of the reverse-convex problem (19).

An advantage of the presented solution approach is that it is applied to the reverse-
convex constraint directly without any transformations of the original problem.

4.2. Convex maximization
One of the fundamental results in the theory of reverse-convex programming is the

reduction theorem [8, 31], which establishes a connection between a reverse-convex op-
timization problem and a convex maximization (concave minimization) problem.

Moreover, a convex maximization problem turns out to be dual (in some sense) to
a reverse-convex constraint problem. Thus, according to the reduction theorem [8, 31],
instead of the problem (19), one can solve the following convex maximization problem:

h(y) ↑ max, (s,y,x) ∈ S , f (s,y,x)≤ ζ , (26)

and if the value V (ζ ) := max{h(y) | (s,y,x)∈S , f (s,y,x)≤ ζ} for ζ = f (ŝ, ŷ, x̂) is equal
to zero, then the point (ŝ, ŷ, x̂) is a solution of the problem (19).

This resulted in emergence of the methods for solving reverse-convex problems; how-
ever, two main points associated with such a reduction should be clarified. First, the basic
nonconvexity in a reverse-convex problem does not disappear: it ”moves” from the fea-
sible set to the objective function. Thus, even with convex f (·) and S , the problem (26)
remains nonconvex. Second, the choice of the parameter ζ in (26) is non trivial.

To find critical points of the convex maximization problem (26), we apply the spe-
cial local search method (LSM-CMP) from [5, 10, 32], which is based on the following
linearization.

Given a numerical sequence {τl}, τl > 0, l = 0,1,2, . . ., and a feasible point (s,y,x)∈
D := {(s,y,x) ∈ S | f (s,y,x) ≤ ζ}, one can produce a sequence {ul}, ul := (sl ,yl ,xl),
using the following rule

ul+1 ∈ D : ⟨∇h(yl),yl+1⟩+ τl ≥ sup
(s,y,x)

{⟨∇h(yl),y⟩ : (s,y,x) ∈ D}. (27)

The function h(·) in (19) is convex, continuously differentiable, and bounded from

above on the feasible set D . If
∞

∑
l=1

τl <+∞, then the sequence {ul} generated by the rule

(27) satisfies the condition

lim
l→+∞

[
sup

(s,y,x)∈D
⟨∇h(yl),y− yl⟩

]
= 0,
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and the classical stationarity condition holds at any limit point of the sequence [5]. We
call such a point critical to the problem (26).

Therefore, the LSM-MCP consists in solving a sequence (l = 0,1,2, . . .) of the fol-
lowing convex programs:

⟨∇h(yl),y⟩ ↑ max, (s,y,x) ∈ D . (28)

According to [5], one can apply several stopping criteria for LSM-CMP:

∥ yl+1 − yl ∥≤ τ

2 ∥ ∇h(yl) ∥
,

h(yl+1)−h(yl)≤ τ

2
,

⟨∇h(yl),yl+1 − yl⟩ ≤ τ

2
,

where τ is a given accuracy. For τl ≤
τ

2
the point (sl ,yl ,xl) turns out to be τ-critical to

the problem (26).

Remark 6. The critical points provided by LSM-RCP (see Subsection 4.1) and LSM-
CMP may differ due to the difference in the linearized problems (20) and (28). Moreover,
as was proven in Proposition 3, y must be binary in the LSM-RCP solution.

Since problems (19) and (26) are very similar, due to the reduction theorem [8, 31],
the Global Search Schemes are mostly the same for both problems. Therefore, we do not
duplicate the GSS from Subsection 4.1, but only point out the main differences induced
by solving the problem (26):

• In Step 0, the value ζk = ζ0 = f (s0,y0,x0) should also be calculated to define the
feasible set D . Furthermore, the value γk = γ0 = h(y0) should be calculated to
define the current level surface of the function h(·).

• In Step 1 applies the LSM-CMP to yield a τk-stationary point.
• For construction of a finite approximation on Step 2, another level surface is used:
{h(y) = γk}.

• The level problem (24) from Step 4 has h(w) = γk as the constraint.
• Looping to the next cycle, in Steps 6 and 7, a recalculation of the value ζk+1 is

added.
Moreover, an additional stopping criterion should be added, as if the method finds a point
(ŝ, ŷ, x̂) such that h(ŷ) = 0 while ζ = f (ŝ, ŷ, x̂), then a solution to the problem (19) is
found.

The sequence produced by the GSS for solving (26) is proven to be maximizing one
if the approximation is resolving and the regularity conditions are satisfied, and the lin-
earized and level problems can be solved efficiently [5, 10]. An advantage of solving
the reverse-convex problem via the convex maximization problem consists in the usage
of different level surfaces h(·) = γk, k = 1,2, . . . , in the GSS, which will probably allow
more efficient jumping out of critical points obtained by local search.
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4.3. Toy example

In the paper, we provide only the first stage of the research, which includes modeling
and describing possible solution techniques. Due to the absence of real-world data, in this
section, we provide an illustrative small-scaled example to demonstrate the main stages
of the developed approach.

Consider 4 planning periods, T = {1,2,3,4}, and 2 manufacturers at the lower level,
I = {1,2}. Let the upper level parameters be the unit storage cost h = (1,20,3,7), the
import cost c = (10,10,5,5), the demand for coal d = (10,100,150,50), and the number
of purchases N = 2. At the lower level, let the limit of coal production be x = (150,250)
and the production costs of the manufacturers be defined by quadratic functions with
coefficients a = (0.5,0.7), b = (20,10).

First, let us compare the performance between two local search methods: the LSM-
RCP based on solving linearized problems (23) (see Subsection 4.1) and the LSM-CMP
with linearized problems (28) (see previous subsection).

Thus, we select starting point (s0,y0,x0) ∈ S such that s0 = (140,240,50,40), y0 =
(1,1,0,0), x0 = (x01;x02) = (100,50,0,0;200,0,0,0) with objective function value f0 =
44640, and show how local search works in Step 1 of the global search scheme.

The LSM-RCP consists of two procedures, but y0 is already on the surface of level
h(·) = 0, so it is not necessary to perform Procedure 1. After applying 2 iterations of Pro-
cedure 2, we got the solution (the critical point) zI = (sI ,yI ,xI) ∈ S :
sI = (144.14,200,50,0), yI = (1,1,0,0), xI = (85.75,86.75,0,0;68.39,69.11,0,0); ζI :=
f (zI) = 23195.82.

As for another local search method, LSM-CMP, by solving a series of linearized prob-
lems, gets as a result the critical point zII = (sII ,yII ,xII)∈ S : sII = (269.14,225.44,75.44,
25.44), yII =(1,1,0,0), xII =(69.2,56.3,0,0;209.9,0,0,0); ζII := f (zII) = 44639.96.

We can easily see ζI < ζII , which emphasizes the LMS-RCP’s efficiency over the
LSM-CMP regarding the objective function value.

Now let us demonstrate the step-by-step performance of the global search procedures
for reverse-convex problem (19) which allow us to escape from the critical point zI .

Step 2. The following points (N1 = 5) was chosen at the level surface {h(·) = 0}
for the approximation: v1=(−0.5,0.5,0.5,0.5),v2=(0.5,0.5,−0.5,0.5),
v3 = (−0.1,0.5,−0.3,0.5), v4 = (0.5,−0.1,1,−0.1245),
v5 = (−0.1,0.5,1,−0.1245); h(vi) = 0, i = 1, . . . ,5.

Step 3. By solving the linearized (at v j) problem (23), the following points
u j = (s j,y j,x j) ∈ IR16, j = 1, . . . ,5, were got:

s y x
u1 : 0,0,45,0 0.03,0.33,1,0 8.31,100,83.55,0;1.69,0,116.45,0
u2 : 165.7,165,50,0 0.57,0.33,0.18,0 98.3,99.3,16.2,0;77.38,0,18.72,0
u3 : 11.6,52.9,50,0 0.07,0.47,0.74,0 0,141.23,81.75,0;21.63,0,65.41,0
u4 : 100,0,50,0 1,0,1,0 108.39,0,105.52,0;1.61,0,94.48,0
u5 : 0,0,50,0 0.03,0.33,1,0 1.16,100,82.81,0;8.84,0,117.19,0

Step 4. By solving the level (h(·) = 0) problem (24) for all j = 1, . . . ,5, the
following points w j ∈ IR4 with the corresponding objective values were
found:
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⟨∇h(w),y−w⟩
w1 : 0.02,0,1.02,0 −0.37
w2 : 0.63,−0.03,−0.17,0 −0.87
w3 : −0.12,0,0.84,0 −0.78
w4 : 1,0,1,0 0
w5 : −0.04,0.31,1.08,−0.08 −0.27

Step 5. η1 = max
1≤ j≤5

⟨∇h(w j),y j −w j⟩= 0, u4∗ = (s4,w4,x4).

Step 6. Since η0 ≥ 0, we set ẑ1 := u4∗, k := 1, and go to Step 1.
Step 1. (k = 1) Starting from the point ẑ1, LSM-RCP provides the solution

z1 := (s1,y1,x1) : s1 = (127,27,50,0), y1 = (1,0,1,0),
x1=(75.75,0,96.75,0;61.25,0,76.25,0); h(y1)=0, f (z1)=19902.25.

Next, by performing Steps 2–5, trying to improve the local solution z1, we fail: all
values η calculated turn out to be less than zero. Here, we can conclude that we got the
best solution to the problem in question. The SCIP solver [33] also found this solution
to the toy example in the formulation (10)–(15), which proved that the solution obtained
using the proposed approach is global.

Upon solving the problem under consideration using a convex maximization problem,
the global search iterates a different way. Although the level surface approximation at Step
2 of the GSS from Subsection 4.2 consisted of the same points (k = 0, γk = 0), the feasible
set of the linearized problems was different due to the different value of ζk = f (zII),
so their solutions were also different. Therefore, more iterations of the algorithm were
required to obtain a solution to the problem.

Thus, the overall cost is 19902.25 when purchasing coal in the first and third periods
in volumes of 75.75 and 96.75 from the first manufacturer, 61.25 and 76.25 from the
second with storage of volumes of 127, 27, and 50 in periods 1, 2, 3, respectively.

5. CONCLUSION

A new mathematical optimization model of interaction between coal manufacturers
and a coal importer in the importer’s country coal market as a bilevel optimization prob-
lem has proposed. It may be useful to describe relationships and trade between China,
Russia and Mongolia as key players in the Chinese coal market.

The upper level objective function is bilinear, and the lower level has a general quadratic
structure with a bilinear term in the objective function. The presence of binary variables
at the upper level makes the problem even more complex.

We transformed the problem into a single-level nonconvex continuous problem and
applied Global Search Theory to develop solution approaches for the resulting problem.

We studied single-level nonconvex problem from two viewpoints: as the reverse-
convex program and as convex maximization program, and developed two solution meth-
ods. An advantage of the first approach is that it handles and considers the reverse-convex
constraint directly, without transforming the problem.

The usage of different level surfaces of convex function referred to reverse-convex
constraint in the second solution approach might allow more efficient jumping out of
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critical points obtained by local search. Therefore, it is superior over the approach based
on solving the reverse-convex problem via the convex maximization problem.

As for further research, it would be interesting to apply the proposed bilevel opti-
mization model and developed solution approach in different sectors for mineral mining
companies.

Funding: The research was supported by RSF (project No 24-41-03004,
https://rscf.ru/project/24-41-03004/).
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