Fractional Programming for Stackelberg Game Under Type-2 Fuzzy Environment

Authors

DOI:

https://doi.org/10.2298/YJOR230915049M

Keywords:

Bi-level fractional programming, Taylor series, GA and PSO, type-2 fuzzy number, Stackelberg game, intuitionistic fuzzy programming

Abstract

This study intends to present a Stackelberg game model for design of the fractional type-2 fuzzy programming. In achieving this aspiration, we develop a probabilistic fuzzy multi-objective fractional linear programming where the entire parameters are of type-2 fuzzy numbers apart from the right-hand side of the constraints are follow Weibull distribution. In the projected approach, the membership function allied with each objective function is generated by using the first-order Taylor series approximation and converted into a single objective function by assuming the weights of the objective functions are equal. Type conversion is made in two ways by existing methods, and using stochastic programming, the probabilistic constraints are transformed into a deterministic form. The accessible model incorporates the non-linear programming viewpoint of the decision-maker and is solved with the help of intuitionistic fuzzy programming (IFS). A comparison study on the optimum results by genetic algorithm (GA) and particle swarm optimization (PSO) with the LINGO 15.0 iterative scheme is offered to resolve the created bi-level programming problem (BLPP) in the course of the Stackelberg game. To make obvious the feasibility of the projected representation and solution methodology, realistic data are measured and results are presented through several discussions.

References

R. J. Kuo and C. C. Huang, “Application of particle swarm optimization algorithm for solving bi-level linear programming problem,” Computers Mathematics with Applications, vol. 58, pp. 678-685, 2009. doi: 10.1016/j.camwa.2009.02.028

S. K. Maiti and S. K. Roy, “Multi-choice stochastic bi-level programming problem in cooperative nature via fuzzy programming approach,” Journal of Industrial Engineering International, vol. 12, no. 3, pp. 287- 298, 2016. doi: doi.org/10.1007/s40092-016-0153-y

S. K. Maiti and S. K. Roy, “Bi-level Programming for Stackelberg Game with Intuitionistic Fuzzy Number: a Ranking Approach,” Journal of the Operations Research Society of China, vol. 9, pp. 131-149, 2019. doi: 10.1007/s40305-018-0234-2

S. K. Maiti and S. K. Roy, “Analysing interval and multi-choice bi-level programming for Stackelberg game using intuitionistic fuzzy programming,” International Journal of Mathematics in Operational Research, vol. 16, no. 3, pp. 354-375, 2020. doi: 10.1504/IJMOR. 2020.106919

H. F. Stackelberg, “The theory of the market economic,” Oxford University Press, 1952, New York, Oxford.

S. K. Roy, “Fuzzy programming techniques for Stackelberg game,” Tamsui Oxford Journal of Management Sciences, vol. 22, no. 3, pp. 43-56, 2006.

S. K. Roy and S. K. Maiti, “Stochastic bi-level programming with multi-choice for Stackelberg game via fuzzy programming,” International Journal of Operational Research, vol. 29, no. 4, pp. 508-530, 2017. doi: 10.1504/ IJOR.2017.085097

L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets and Systems, vol. 100, pp. 9-34, 1999. issn: 0165-0114. doi: doi.org/10.1016/S0165-0114(99)80004-9

M. Mizumoto and K. Tanaka, “Fuzzy sets and type 2 under algebraic product and algebraic sum,” Fuzzy Sets and Systems, vol. 5, pp. 277-290, 1981.

S. Greenfield, F. Chiclana, R. John and S. Coupland, “The sampling method of defuzzification for type-2 fuzzy sets: Experimental evaluation,” Information Sciences, vol. 189, pp. 77-92, 2012. doi: 10.1016/j.ins.2011.11.042

H. J. Zimmermann, “Fuzzy Programming and Linear Programming with Several Objective Functions,” Fuzzy Sets and Systems, vol. 1, no. 1, pp. 45-55, 1978. doi: 10.1016/0165- 0114(78)90031-3

Z. Q. Liu and Y. K. Liu, “Type2 fuzzy variables and their arithmetic,” Soft Computing, vol. 14, no. 7, pp. 729-747, 2010. doi: 10.1007/s00500-009-0461-x

J. M. Mendel, “Advances in type-2 fuzzy sets and systems,” Information Sciences, vol. 177, no. 1, pp. 84-110, 2007.

D. Hidalgo, O. Castillo and P. Melin, “Type-1 and Type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms,” International Journal of Biometrics, vol. 1, no. 1, 2008. doi: 10.1504/IJBM.2008.018666

D. Hidalgo, P. Melin and O. Castillo, “An optimization method for designing type-2 fuzzy inference systems based on the footprint of uncertainty using genetic algorithms,” Expert Systems with Applications, vol. 39, no. 4, pp. 4590-4598, 2012. doi: 10.1016/j.eswa.2011.10.003

P. Melin, O. Mendoza and O. Castillo, “An improved method for edge detection based on interval type-2 fuzzy logic,” Expert Systems with Applications, vol. 37, no. 12, pp. 8527-8535, 2010. doi: 10.1016/j.eswa.2010.05.023

S. K. Roy and A. Bhaumik, “IntelligentWater Management: a Triangular Type-2 Intuitionistic Fuzzy Matrix Games Approach,” Water Resources Management, vol. 32, no. 3, pp. 949-968, 2017. doi: 10.1007/s11269-017-1848-6

K. Mittal, A. Jain, K. S. Vaisla, O. Castillo and J. Kacprzyk, “A Comprehensive Review on Type 2 Fuzzy Logic Applications: Past, Present and Future,” Engineering Applications of Artificial Intelligence, vol. 95, 2020. doi: 10.1016/j.engappai. 2020.103916

F. Z. Benchara and M. Youssfi, “A New Distributed Type-2 Fuzzy Logic Method for Efficient Data Science Models of Medical Informatics,” Advances in Fuzzy Systems, pp. 1-10, 2020. doi: doi.org/10.1155/2020/6539123

R. Chimatapu, H. Hagras, M. Kern and G. Owusu, “Hybrid Deep Learning Type-2 Fuzzy Logic Systems For Explainable AI,” IEEE International Conference on Fuzzy Systems, 2020. doi: 10.1109/FUZZ48607.2020.9177817

N. Karnik and J. Mendel, “Centroid of a type-2 fuzzy set,” Information Sciences, vol. 132, pp. 195-220, 2001. doi: 10.1016/S0020-0255(01)00069-X

S. Barkat, A. Tlemc,ani and H. Nouri, “Noninteracting Adaptive Control of PMSM Using Interval Type-2 Fuzzy Logic Systems,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 5, pp. 925-936, 2011. doi: 10.1109/TFUZZ.2011.2152815

T. Kumbasar, “Revisiting Karnik-Mendel Algorithms in the Framework of Linear Fractional Programming,” International Journal of Approximate Reasoning, vol. 82, pp. 1-21, 2017. doi: 10.1016/j.ijar.2016.11.019

J. Li, R. John, S. Coupland and G. Kendall, “On Nie-Tan Operator and Type-Reduction of Interval Type-2 Fuzzy Sets,” IEEE Transactions on Fuzzy Systems, vol. 26, pp. 1036-1039, 2018. doi: 10.1109/TFUZZ.2017.2666842

Y. Chen and D. Wang, “Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted enhanced Karnik-Mendel algorithms,” Soft Computing, vol. 22, no. 4, pp. 1361-1380, 2017. doi: 10.1007/s00500-017-2938-3

B. Wang, Y. Zhang and Z. H. Zhou, “On repeated Stackelberg security game with the cooperative human behaviour model for wildlife protection,” Applied Intelligence, 2019. doi: doi.org/10.1007/s10489-018-1307-y

D. Wang and Y. Chen, “Study on permanent magnetic drive forecasting by designing Takagi Sugeno Kang type interval type-2 fuzzy logic systems,” Transactions of the Institute of Measurement and Control, vol. 40, no. 6, pp. 2011-2023, 2018. doi: 10.1177/0142331217694682

S. Karmakar, M. R. Seikh, and O. Castillo, “Type-2 intuitionistic fuzzy matrix games based on a new distance measure: Application to biogas-plant implementation problem,” Applied Soft Computing, vol. 59, pp. 48-57, 2014. doi: doi.org/10.1016/j.asoc.2021.107357

J. Dong and S. Wan, “Type-2 interval-valued intuitionstic fuzzy matrix game and application to energy vehicle industry development,” Expert Systems with Applications, 2024. doi: 10.1016/j.eswa.2024.123398

M. R. Seikh and S. Dutta, “A non-linear mathematical approach for solving matrix games with picture fuzzy payoffs with application to cyberterrorism attacks,” Decision Analytics Journal, Vol. 10, 2024. doi: doi.org/10.1016/j.dajour.2023 .100394

P. Gupta and D. Bhatia, “Sensitivity analysis in fuzzy multiobjective linear fractional programming problem,” Fuzzy Sets and Systems, vol. 122, no. 2, pp. 229-236, 2001. doi: 10.1016/S0165-0114(99)00164-5

N. Guzel and M. Sivri, “Taylor series solution of multi-objective linear fractional programming problem,” Trakya University Journal of Sciences, vol. 6, no. 2, pp. 91-98, 2005.

H. Yano and M. Sakawa, “Interactive fuzzy decision making for multiobjective linear programming problems and its application to a Crop Planning Problem,” Computational Intelligence, vol. 577, pp. 143-157, 2015. doi: 10.1007/978-3-319-11271-8-10

B. B. Pal, B. N. Moitra and U. Maulik, “A goal programming procedure for fuzzy multiobjective linear fractional programming problem,” Fuzzy Sets and Systems, vol. 139, no. 2, pp. 395-405, 2003. doi: 10.1016/S0165-0114(02)00374-3

M. Chakraborty and S. Gupta, “Fuzzy mathematical programming for multi-objective linear fractional programming problem,” Fuzzy Sets and Systems, vol. 125, np. 3, pp. 335-342, 2002. doi: 10.1016/S0165-0114(01)00060-4

C. Kahraman, B. Öztayşi, İ. U. Sari and E. Turanoğlu “Fuzzy Analytic Hierarchy Process with Interval Type-2 Fuzzy Sets,” Knowledge-Based Systems, vol. 59, 2014. doi: 10.1016/j.knosys.2014.02.001

G. Anandalingam and V. Apprey, “Multi-level programming and conflict resolution,” European Journal of Operational Research, vol. 51, no. 2, pp. 233-247, 1991. doi: doi.org/10.1016/0377- 2217(91)90253-R

K. Shimizu and E. Aiyoshi, “A new computational method for Stackelberg and min-max problems by use of a penalty method,” IEEE Transactions on Automatic Control, vol. 26, no. 2, pp. 460-466, 1981. doi: 10.1109/TAC.1981.1102607

A. Ren and Y. Wang, “A new approach based on possibilistic programming technique and fractile optimization for bilevel programming in a hybrid uncertain circumstance”, Applied Intelligence, vol. 48, pp. 3782-3796, 2018. doi: 10.1007/s10489-018-1177-3

S. K. Roy and S. K. Maiti, “Reduction methods of type-2 fuzzy variables and their applications to Stackelberg game,” Applied Intelligence, vol. 50, 2020. doi: 10.1007/s10489-019-01578-2

M. Sakawa and H. Katagiri, “Stackelberg solutions for fuzzy random two-level linear programming through level sets and fractile criterion optimization,” Central European Journal of Operations Research, vol. 20, no. 1, pp. 101-117, 2010. doi: 10.1007/s10100-010-0156-5

E. Youness and O. E. Emam, “Fuzzy Bi-Level Multi-Objective Fractional Integer Programming,” Applied Mathematics &Information Sciences, vol. 8, no. 6, 2014. doi: 10.12785/amis/080622

H. M. Alshanbari, O. H. Odhah, Z. Ahmad, F. Khan and A. H. E. Bagoury, “A New Probability Distribution: Model, Theory and Analyzing the Recovery Time Data,” MDPI, vol. 12, no. 5, 2023. doi: 10.3390/axioms12050477

A. Khalil, A. A. H. Ahmadini, M. Ali,W. K. Mashwani, S. S. Alshqaq and Z. Salleh , “A Novel Method for Developing Efficient Probability Distributions with Applications to Engineering and Life Science Data,” Journal of Mathematics, 2021. doi: 10.1155/2021/4479270

B. C. Das and S. K. Roy, “Fuzzy-based GA for entropy bi-matrix goal game,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 18, no. 6, pp. 779-799, 2010.

S. K. Roy and P. Mula, “Solving matrix game with rough payoffs using genetic algorithm,” Operational Research, vol. 16, no. 1, pp. 117-130, 2015. doi: 10.1007/s12351-015-0189-6

A. G. Gad, “Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review,” Archives of Computational Methods in Engineering, vol. 29, pp. 2531-2561, 2022. doi: 10.1007/s11831-021-09694-4

A. Muhammad,W. Dudek, and F. Ilyas, “Group decision-making based on pythagorean fuzzy TOPSIS method,” International Journal of Intelligent Systems, vol. 34, no. 156, 2019. doi: 10.1002/int.22103

S. Hendiani, L. Jiang, E. Sharifi and H. Liao, “Multi-expert multi-criteria decision making based on the likelihoods of interval type-2 trapezoidal fuzzy preference relations,” International Journal of Machine Learning and Cybernetics, 2020. doi: 10.1007/s13042-020-01148-w

Downloads

Published

2024-10-24

How to Cite

Maiti, S. K., Roy, S. K., Saha, C., & Das, G. (2024). Fractional Programming for Stackelberg Game Under Type-2 Fuzzy Environment. Yugoslav Journal of Operations Research, 35(3), 681–723. https://doi.org/10.2298/YJOR230915049M

Issue

Section

Research Articles