Nonconvex Optimization Approach to Bilevel Problem of Coal Production and Purchase With Storage
DOI:
https://doi.org/10.2298/YJOR250415044GKeywords:
bilevel optimization modeling, KKT-approach, reverse-convex programming, convex maximization, Global Search Theory, local search, global search schemeAbstract
The paper addresses a new mathematical model of interaction between coal manufacturers and coal importers in a country coal market as a bilevel optimization problem. The goal of the upper level which is decided on coal purchases and storage, is to satisfy the demand for coal in each time period, minimizing the costs of purchase and storage. At the lower level, each supplier company maximizes its profit by varying the volume of coal production based on the purchase prices. The presence of binary variables adds complexity to the model. We transform the bilevel problem into a single-level nonconvex problem and apply the Global Search Theory to develop solution approaches for the resulting problem. The advantages and disadvantages of the proposed approaches are discussed.
References
P. Benalcazar, J. Kaminski, and P. Saluga, “The storage location problem in a coal supply chain: Background and methodological approach,” Gospodarka Surowcami Mineralnymi, vol. 33, 2017. doi: 10.1515/gospo-2017-0009
S. Dempe, Foundations of bilevel programming. Dordrecht: Kluwer Academic Publishers, 2002.
T. Kleinert, M. Labbe, I. Ljubic, and M. Schmidt, “A survey on mixed-integer programming techniques in bilevel optimization,” EURO Journal on Computational Optimization, vol. 9, p. 100007, 2021. doi: 10.1016/j.ejco.2021.100007
S. Dempe and A. Zemkoho, Eds., Bilevel Optimization: Advances and Next Challenges. Cham: Springer International Publishing, 2020.
A. Strekalovsky, Elements of nonconvex optimization [in Russian]. Nauka, 2003.
A. Strekalovsky,“Onsolving optimization problems with hidden nonconvex structures,” in Optimization in science and engineering, C. F. T.M. Rassias and S. Butenko, Eds. Springer, 2014, pp. 465–502.
R. Horst, P. Pardalos, and N. Thoai, Introduction to Global Optimization. Nonconvex Optimization and Its Applications. Springer, 2001.
R.HorstandH.Tuy, GlobalOptimization. Deterministic Approaches. Springer-Verlag, 1993.
I. Tseveendorj, “Reverse convex problems: an approach based on optimality conditions,” Journal of Applied Mathematics and Decision Sciences, vol. 2006, 2006. doi: 10.1155/JAMDS/2006/29023
A. S. Strekalovsky and A. A. Kuznetsova, “Convergence of a global search algorithm in the problem of convex maximization on an admissible set,” Russian Mathematics, vol. 43, pp. 70–77, 1999.
Y. Pochet and L. A. Wolsey, “Lot-size models with backlogging: Strong reformulations and cutting planes,” Mathematical Programming, vol. 40, no. 1, pp. 317–335, 1988. doi: 10.1007/BF01580738
T. Gruzdeva and E. Petrova, “Numerical solution of a linear bilevel problem,” Computational Mathematics and Mathematical Physics, vol. 50, pp. 1631–1641, 2010.
A. Orlov, The global search theory approach to the bilevel pricing problem in telecommunication networks. Springer International Publishing AG, 2018, pp. 57–73.
A. Strekalovsky and A. Orlov, Linear and quadratic-linear problems of bilevel optimization [in Russian]. SB RAS publishing, 2019.
A. Strekalovsky and A. Orlov, Global search for bilevel optimization with quadratic data. Cham: Springer International Publishing, 2020, vol. 161, pp. 313–334.
A. S. Strekalovsky, “On global optimality conditions for d.c. minimization problems with d.c. constraints,” Journal of Applied and Numerical Optimization, vol. 3, pp. 175–196, 2021.
A. S. Strekalovsky, “Minimizing sequences in a constrained dc optimization problem,” Proceedings of the Steklov Institute of Mathematics, vol. 323, pp. S255–S278, 2023.
T. Gruzdeva and A. Strekalovsky, “A d.c. programming approach to fractional problems,” in Learning and Intelligent Optimization, ser. Lecture Notes in Computer Science, R. Battiti, D. Kvasov, and S. Ya., Eds., vol. 10556. Cham: Springer, 2017, pp. 331–337.
R. Enkhbat, T. V. Gruzdeva, and M. V. Barkova, “D.c. programming approach for solving an applied ore-processing problem,” Journal of Industrial and Management Optimization, vol. 14, no. 2, pp. 613–623, 2018. doi: 10.3934/jimo.2017063
M. Gaudioso, T. V. Gruzdeva, and A. S. Strekalovsky, “On numerical solving the spherical separability problem,” Journal of Global Optimization, vol. 66, no. 1, pp. 21–34, 2016. doi: 10.1007/s10898-015-0319-y
T. Gruzdeva and A. Strekalovsky, “On solving the sum-of-ratios problem,” Applied Mathematics and Computation, vol. 318, 2017. doi: 10.1016/j.amc.2017.07.074
T. V. Gruzdeva and A. V. Ushakov, “K-means clustering via a nonconvex optimization approach,” in Mathematical Optimization Theory and Operations Research, ser. Lecture Notes in Computer Science, P. Pardalos, M. Khachay, and A. Kazakov, Eds., vol. 12755. Cham: Springer, 2021. doi: 10.1007/978-3-030-77876-7 31 pp. 462–476.
A. Strekalovsky and M. Barkova, “On the solution of systems of quadratic equations [in russian],” Trudy Instituta Matematiki i Mekhaniki UrO RAN, vol. 30, pp. 173–187, 2024. doi: 10.21538/0134-4889-2024-30-2-173-187
T. Gruzdeva and A. Strekalovsky, “Local search in problems with nonconvex constraints,” Computational Mathematics and Mathematical Physics, vol. 47, pp. 381–396, 2007. doi: 10.1134/S0965542507030049
A. S. Strekalovsky, “On local search in d.c. optimization problems,” Applied Mathematics and Computation, vol. 255, no. 0, pp. 73–83, 2015.
A. Strekalovsky, “On convergence of a global search strategy for reverse covex problems,” Journal of Applied Mathematics and Decision Sciences, vol. 2005, pp. 149–164, 01 2005. doi: 10.1155/JAMDS.2005.149
J. B. Rosen, “Iterative solution of nonlinear optimal control problems,” SIAM Journal on Control, vol. 4, no. 1, pp. 223–244, 1966. doi: 10.1137/0304021
J. Bonnans, J. C. Gilbert, C. Lemar´echal, and C. Sagastizabal, Numerical OptimizationTheoretical and Practical Aspects. Springer, 2006.
J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., ser. Operations Research and Financial Engineering. New York: Springer, 2006.
A. Strekalovsky and I. Tsevendorj, “Testing the r-strategy for a reverse convex problem,” Journal of Global Optimization, vol. 13, pp. 61–74, 1998. doi: 10.1023/A:1008260227877
H. Tuy, “The complementary convex structure in global optimization,” Journal of Global Optimization, vol. 2, no. 1, pp. 21–40, Mar 1992. doi: 10.1007/BF00121300
A. Kuznetsova, “On a quadratic problem of convex maximization,” Computational Mathematics and Mathematical Physics, vol. 42, pp. 1268–1275, 2002.
S. Bolusani, M. Besanc¸on, K. Bestuzheva, A. Chmiela, J. Dion´ısio, T. Donkiewicz, J. van Doornmalen, L. Eifler, M. Ghannam, A. Gleixner, C. Graczyk, K. Halbig, I. Hedtke, A. Hoen, C. Hojny, R. van der Hulst, D. Kamp, T. Koch, K. Kofler, J. Lentz, J. Manns, G. Mexi, E. M¨uhmer, M. E. Pfetsch, F. Schl¨osser, F. Serrano, Y. Shinano, M. Turner, S. Vigerske, D. Weninger, and L. Xu, “The SCIP Optimization Suite 9.0,” Zuse Institute Berlin, ZIB-Report 24-02-29, February 2024. [Online]. Available: https://nbn-resolving.org/urn:nbn:de:0297-zib-95528
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Yugoslav Journal of Operations Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.