Entropy-Based Analysis Using Linear Diophantine Multi Fuzzy Soft Sets: A DEA Approach for Improved Decision Systems

Abstract

This article unveils an innovative approach to improving the entropy measure analysis of Decision Making Units(DMUs) in the context of linear Diophantine multi-fuzzy soft sets. Though multi-fuzzy soft sets combine multi-dimensional values and parameters to create a hybrid model with considerable versatility, linear diophantine fuzzy sets, a noteworthy extension of conventional fuzzy sets, are also utilized to ease prior constraints. Entropy is a fundamental concept in fuzzy set theory and a useful tool for quantifying the level of fuzziness seen in fuzzy sets. We employ entropy measurements to quantify the weights of input and output components in data envelopment analysis, a non-parametric method frequently used in multi-criteria decision-making. The novelty of this study is integrating the weight determination in Data Envelopment Analysis (DEA) by introducing novel entropy measures with linear Diophantine multi-fuzzy soft sets. The significance of DEA is found in its strong analytical capabilities, which facilitate improved decision-making, boost operational effectiveness, and encourage ongoing development in a variety of industries. To illustrate the significance of our suggested approach, we offer a numerical example of building energy efficiency using a DEA model. This work contributes to fuzzy set theory and DEA techniques, offering a helpful tool for evaluating and enhancing complex decision systems.

References

A. Charnes, W. Cooper, and E. Rhodes, “Measuring the efficiency of decision makingunits,”European Journal of Operational Research, vol. 2, no. 6, pp. 429–444, 1978. doi:https://doi.org/10.1016/0377-2217(78)90138-8

K. K. Mohanta and O. Toragay, “Enhanced performance evaluation through neutrosophicdata envelopment analysis leveraging pentagonal neutrosophic numbers,”Journal of Oper-ational and Strategic Analytics, 2023. doi: https://doi.org/10.56578/josa010204

K. K. Mohanta and D. S. Sharanappa, “Neutrosophic data envelopment analysis: a com-prehensive review and current trends,”Opt. [Internet], vol. 1, pp. 10–22, 01 2024.

N. Ekram Nosratian and M. T. Taghavi Fard, “A proposed model for the assessment of sup-ply chain management using dea and knowledge management,”Computational Algorithmsand Numerical Dimensions, vol. 2, no. 3, pp. 136–147, 2023. doi: 10.22105/cand.2023.191008

J. Gerami and M. R. Mozaffari, “Additive slacks-based measure of efficiency for dealingwith undesirable outputs based on dea-r model,”Big Data and Computing Visions, vol. 1,no. 1, pp. 15–23, 2021. doi: 10.22105/bdcv.2021.142082

R. Rasinojehdehi and S. Najafi, “Integrating pca and dea techniques for strategic assessmentof network security,”Computational Algorithms and Numerical Dimensions, vol. 2, no. 1,pp. 23–34, 2023. doi: 10.22105/cand.2023.424893.1076

A. Nosrat and G. Roozbehi, “A non-radial dea model to determine the performance of thebasic two-stage systems,”Journal of Decisions and Operations Research, vol. 4, no. 4, pp.324–331, 2020. doi: 10.22105/dmor.2020.104022

R. Rasinojehdehi and H. Valami, “A comprehensive neutrosophic model for evaluating theefficiency of airlines based on sbm model of network dea,”Decision Making: Applications inManagement and Engineering, vol. 6, pp. 880–906, 08 2023. doi: 10.31181/dma622023729

J. Sengupta, “A fuzzy system approach in data envelopment analysis,”Computers Math-ematics With Applications - COMPUT MATH APPL, vol. 24, pp. 259–266, 10 1992. doi:10.1016/0898-1221(92)90203-T

L. Zadeh, “Fuzzy sets,”Information and Control, vol. 8, no. 3, pp. 338–353, 1965. doi:10.1016/S0019-9958(65)90241-X

M. Dotoli, N. Epicoco, M. Falagario, and F. Sciancalepore, “A cross-efficiency fuzzydata envelopment analysis technique for performance evaluation of decision makingunits under uncertainty,”ComputersIndustrial Engineering, vol. 79, 11 2014. doi:10.1016/j.cie.2014.10.026

C. Kao and S.-T. Liu, “Liu, s.t.: Fuzzy efficiency measures in data envelopment analysis.fuzzy set. syst. 113, 427-437,”Fuzzy Sets and Systems, vol. 113, pp. 427–437, 08 2000. doi:10.1016/S0165-0114(98)00137-7

H.-Y. Tsai, C. W. Chang, and H.-L. Lin, “Fuzzy hierarchy sensitive with delphi method toevaluate hospital organization performance,”Expert Systems with Applications, vol. 37, pp.5533–5541, 08 2010. doi: 10.1016/j.eswa.2010.02.099

H. Moheb-Alizadeh, S. Rasouli, and R. Tavakkoli-Moghaddam, “The use of multi-criteriadata envelopment analysis (mcdea) for location-allocation problems in a fuzzy environment,”Expert Syst. Appl., vol. 38, pp. 5687–5695, 05 2011. doi: 10.1016/j.eswa.2010.10.065

I. Ucal Sari and U. Ak, “Machine efficiency measurement in industry 4.0 using fuzzy dataenvelopment analysis,”Journal of Fuzzy Extension and Applications, vol. 3, no. 2, pp.177–191, 2022. doi: 10.22105/jfea.2022.326644.1199

L. Zou, X. Wen, and Y. Wang, “Linguistic truth-valued intuitionistic fuzzy reasoning withapplications in human factors engineering,”Information Sciences, vol. 327, 08 2015. doi:10.1016/j.ins.2015.07.048

K. T. Atanassov, “Intuitionistic fuzzy sets,”Fuzzy Sets and Systems, vol. 20, no. 1, p. 87–96,Aug 1986. doi: 10.1016/s0165-0114(86)80034-3

J. Puri and S. Yadav, “Intuitionistic fuzzy data envelopment analysis: An applicationto the banking sector in india,”Expert Systems with Applications, vol. 42, 02 2015. doi:10.1016/j.eswa.2015.02.014

R. Tavakkoli-Moghaddam and M. S, “Finding a common set of weights by the fuzzy entropy compared with data envelopment analysis - a case study,”International Journal ofIndustrial Engineering Production Research, vol. 21, 09 2010.

A. Arya and S. Yadav, “Development of intuitionistic fuzzy data envelopment analysismodels and intuitionistic fuzzy input–output targets,”Soft Computing, vol. 23, 09 2019.doi: 10.1007/s00500-018-3504-3

A. Mahmoodirad, D. Pamucar, and S. Niroomand, “A new intuitionistic fuzzyscheme of data envelopment analysis for evaluating rural comprehensive health ser-vice centers,”Socio-Economic Planning Sciences, vol. 95, p. 102004, 2024. doi:https://doi.org/10.1016/j.seps.2024.102004

M. A. Sahil and Q. D. Lohani, “Comprehensive intuitionistic fuzzy network data envelop-ment analysis incorporating undesirable outputs and shared resources,”MethodsX, vol. 12,p. 102710, 2024. doi: https://doi.org/10.1016/j.mex.2024.102710

M. A. Pereira and A. S. Camanho, “The ‘healthcare access and quality index’ revisited: Afuzzy data envelopment analysis approach,”Expert Systems with Applications, vol. 245, p.123057, 2024. doi: https://doi.org/10.1016/j.eswa.2023.123057

M. A. Sahil, M. Kaushal, and Q. M. D. Lohani, “A novel pythagorean approach basedsine-shaped fuzzy data envelopment analysis model: An assessment of indian public sectorbanks,”Computational Economics, pp. 1–23, 04 2024. doi: 10.1007/s10614-024-10603-7

L. Huang and Chen, “A novel approach for efficiency evaluation in data envelopment analysisframework with fuzzy stochastic variables,”International Journal of Fuzzy Systems, 092024. doi: 10.1007/s40815-024-01811-2

J. Zhu, L. Wan, H. Zhao, L. Yu, and S. Xiao, “Evaluation of the integration of industrializa-tion and information-based entropy ahp–cross-efficiency dea model,”Chinese ManagementStudies, vol. 18, 01 2023. doi: 10.1108/CMS-03-2022-0098

K. Raj, S. Srinivasan, and C. Nandakumar, “Cost efficiency analysis of public sector generalinsurers by fuzzy dea approach,”OPSEARCH, 06 2024. doi: 10.1007/s12597-024-00771-3

K. Mohanta and D. Sharanappa, “The spherical fuzzy data envelopment analysis (sf-dea):A novel approach for efficiency analysis,” 10 2022. doi: 10.1063/5.0199519

R. Kiani-Ghalehno and A. Mahmoodirad, “Providing bank branch ranking algorithm withfuzzy data, using a combination of two methods dea and mcdm,”Journal of AmbientIntelligence and Humanized Computing, vol. 15, pp. 1–12, 07 2024. doi: 10.1007/s12652-024-04833-8

R. R. Yager, “Pythagorean membership grades in multicriteria decision making,”IEEE Transactions on Fuzzy Systems, vol. 22, no. 4, p. 958–965, Aug 2014. doi:10.1109/tfuzz.2013.2278989

Yager and R. R., “Generalized orthopair fuzzy sets,”IEEE Transactions on Fuzzy Systems,vol. 25, no. 5, p. 1222–1230, Oct 2017. doi: 10.1109/tfuzz.2016.2604005

M. Riaz and M. R. Hashmi, “Linear diophantine fuzzy set and its applications towardsmulti-attribute decision-making problems,”Journal of Intelligent Fuzzy Systems, vol. 37,no. 4, p. 5417–5439, Oct 2019. doi: 10.3233/jifs-190550

J. Kannan, V. Jayakumar, M. Pethaperumal, and A. B. Kather Mohideen, “An intensifiedlinear diophantine fuzzy combined dematel framework for the assessment of climate crisis,”Stochastic Environmental Research and Risk Assessment, Jan 2024. doi: 10.1007/s00477-023-02618-7

K. Jeevitha, H. Garg, J. Vimala, H. Aljuaid, and A.-H. Abdel-Aty, “Linear diophantinemulti-fuzzy aggregation operators and its application in digital transformation,”Journal ofIntelligent Fuzzy Systems, vol. 45, no. 2, p. 3097–3107, Aug 2023. doi: 10.3233/jifs-223844

V. Jayakumar, A. B. K. Mohideen, M. H. Saeed, H. Alsulami, A. Hussain, and M. Saeed,“Development of complex linear diophantine fuzzy soft set in determining a suitable agri-drone for spraying fertilizers and pesticides,”IEEE Access, vol. 11, p. 9031–9041, 2023. doi:10.1109/access.2023.3239675

A. Iampan, G. S. Garc ́ıa, M. Riaz, H. M. Athar Farid, and R. Chinram, “Linear diophantinefuzzy einstein aggregation operators for multi-criteria decision-making problems,”Journalof Mathematics, vol. 2021, p. 1–31, Jul 2021. doi: 10.1155/2021/5548033

S. Ayub, M. Shabir, M. Riaz, M. Aslam, and R. Chinram, “Linear diophantine fuzzy re-lations and their algebraic properties with decision making,”Symmetry, vol. 13, no. 6, p.945, May 2021. doi: 10.3390/sym13060945

M. Riaz, M. R. Hashmi, H. Kalsoom, D. Pamucar, and Y.-M. Chu, “Linear diophantine fuzzysoft rough sets for the selection of sustainable material handling equipment,”Symmetry,vol. 12, no. 8, p. 1215, Jul 2020. doi: 10.3390/sym12081215

M. Riaz, H. M. A. Farid, M. Aslam, D. Pamucar, and D. Bozani ́c, “Novel approach for third-party reverse logistic provider selection process under linear diophantine fuzzy prioritized ag-gregation operators,”Symmetry, vol. 13, no. 7, p. 1152, Jun 2021. doi: 10.3390/sym13071152

H. M. A. Farid, M. Riaz, M. J. Khan, P. Kumam, and K. Sitthithakerngkiet, “Sustain-able thermal power equipment supplier selection by einstein prioritized linear diophantinefuzzy aggregation operators,”AIMS Mathematics, vol. 7, no. 6, p. 11201–11242, 2022. doi:10.3934/math.2022627

M. Riaz, H. M. A. Farid, W. Wang, and D. Pamucar, “Interval-valued linear diophan-tine fuzzy frank aggregation operators with multi-criteria decision-making,”Mathematics,vol. 10, no. 11, p. 1811, May 2022. doi: 10.3390/math10111811

V. Jayakumar, J. Kannan, N. Kausar, M. Deveci, and X. Wen, “Multicriteria group deci-sion making for prioritizing iot risk factors with linear diophantine fuzzy sets and marcosmethod,”Granular Computing, vol. 9, no. 3, May 2024. doi: 10.1007/s41066-024-00480-8

J. Kannan, V. Jayakumar, M. Saeed, T. Alballa, H. A. E.-W. Khalifa, and H. G. Gomaa,“Linear diophantine fuzzy clustering algorithm based on correlation coefficient and analysison logistic efficiency of food products,”IEEE Access, vol. 12, p. 34889–34902, 2024. doi:10.1109/access.2024.3371986

S. Petchimuthu, M. Riaz, and H. Kamaci, “Correlation coefficient measures and aggregationoperators on interval-valued linear diophantine fuzzy sets and their applications,”Computa-tional and Applied Mathematics, vol. 41, no. 8, Nov 2022. doi: 10.1007/s40314-022-02077-w

D. Molodtsov, “Soft set theory,”computers and Mathematics with applications, vol. 37, pp.19–31, 1999.

K. Maji, P., R. Biswas, and A. Roy, “Fuzzy soft set,”Journal of Fuzzy Mathematics, vol. 9,pp. 589–602, 2001.

K. Maji P., R. Biswas, and A. Roy, “Intuitionistic fuzzy soft set,”Journal of Fuzzy Mathe-matics, vol. 9, pp. 677–692, 2001.

J. Vimala, P. Mahalakshmi, A. U. Rahman, and M. Saeed, “A customized topsis methodto rank the best airlines to fly during covid-19 pandemic with q-rung orthopair multi-fuzzy soft information,”Soft Computing, vol. 27, no. 20, p. 14571–14584, Aug 2023. doi:10.1007/s00500-023-08976-2

M. Pethaperumal, V. Jeyakumar, J. Kannan, and A. Banu, “An algebraic analysis onexploring q-rung orthopair multi-fuzzy sets,”Journal of Fuzzy Extension and Applications,vol. 4, no. 3, pp. 235–245, 2023. doi: 10.22105/jfea.2023.408513.1302

J. Vimala, H. Garg, and K. Jeevitha, “Prognostication of myocardial infarction using latticeordered linear diophantine multi-fuzzy soft set,”International Journal of Fuzzy Systems,vol. 26, no. 1, p. 44–59, Aug 2023. doi: 10.1007/s40815-023-01574-2

J. Kannan, V. Jayakumar, and A. B. Saeid, “Lattice algebraic structures on ldmfsdomains,”New Mathematics and Natural Computation, p. 1–21, Mar 2024. doi:10.1142/s1793005725500218

J. KANNAN and V. JAYAKUMAR, “Sustainable method for tender selection using lin-ear diophantine multi-fuzzy soft set,”Communications Faculty Of Science University ofAnkara Series A1Mathematics and Statistics, vol. 72, no. 4, p. 976–991, Jul 2023. doi:10.31801/cfsuasmas.1255830

J. Kannan, V. Jayakumar, M. Pethaperumal, and N. S. Shanmugam, “Linear diophantinemulti-fuzzy soft similarity measures: An analysis on alternative-fuel,”Journal of IntelligentFuzzy Systems, p. 1–13, Apr 2024. doi: 10.3233/jifs-219415

A. Pandipriya, D. J, and S. S. Begam, “Lattice ordered interval-valued hesitant fuzzy softsets in decision making problem,”International Journal of Engineering Technology, vol. 7,pp. 52–55, 01 2018. doi: 10.14419/ijet.v7i1.3.9226

J. A. Colombo, T. Akhter, P. Wanke, M. A. K. Azad, Y. Tan, S. A. Edalatpanah, andJ. Antunes, “Interplay of cryptocurrencies with financial and social media indicators: Anentropy-weighted neural-madm approach,”Journal of Operational and Strategic Analytics,2023. doi: https://doi.org/10.56578/josa010402

D. L. A and T. S, “A definition of a nonprobabilistic entropy in the setting offuzzy sets theory,”Information and Control, vol. 20, no. 4, pp. 301–312, 1972. doi:https://doi.org/10.1016/S0019-9958(72)90199-4

M. HIGASHI and G. KLIR, “On measures of fuzziness and fuzzy complements,”Interna-tional Journal of General Systems - INT J GEN SYSTEM, vol. 8, pp. 169–180, 04 2008.doi: 10.1080/03081078208547446

A. Kaufmann and A. P. Bonaert, “Introduction to the theory of fuzzy subsets-vol. 1: Fun-damental theoretical elements,”IEEE Transactions on Systems, Man, and Cybernetics,vol. 7, no. 6, pp. 495–496, 1977. doi: 10.1109/TSMC.1977.4309751

E. Trillas and T. Riera, “Entropies in finite fuzzy sets,”Inf. Sci., vol. 15, pp. 159–168, 071978. doi: 10.1016/0020-0255(78)90005-1

S. Loo, “Measures of fuzziness,”Cybernetica, vol. 20, 01 1977.

L. Xuecheng, “Entropy, distance measure and similarity measure of fuzzy sets and theirrelations,”Fuzzy Sets and Systems, vol. 52, pp. 305–318, 03 1994. doi: 10.1016/0165-0114(92)90239-Z

J.-L. Fan and Y.-L. Ma, “Some new fuzzy entropy formulas,”Fuzzy Sets and Systems, vol.128, pp. 277–284, 06 2002. doi: 10.1016/S0165-0114(01)00127-0

H.-y. Zhang, W. Zhang, and C. Mei, “Entropy of interval-valued fuzzy sets based on distanceand its relationship with similarity measure,”Knowl.-Based Syst., vol. 22, pp. 449–454, 082009. doi: 10.1016/j.knosys.2009.06.007

P. Burillo and H. Bustince, “Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets,”Fuzzy Sets and Systems, vol. 78, no. 3, pp. 305–316, 1996. doi:https://doi.org/10.1016/0165-0114(96)84611-2

E. Szmidt and J. Kacprzyk, “Entropy for intuitionistic fuzzy sets,”Fuzzy Sets and Systems,vol. 118, no. 3, pp. 467–477, 2001. doi: https://doi.org/10.1016/S0165-0114(98)00402-3

W. Zeng and H. Li, “Relationship between similarity measure and entropy of intervalvalued fuzzy sets,”Fuzzy Sets and Systems, vol. 157, no. 11, pp. 1477–1484, 2006. doi:https://doi.org/10.1016/j.fss.2005.11.020

W.-L. Hung and M.-S. Yang, “Fuzzy entropy on intuitionistic fuzzy sets,”Inter-national Journal of Intelligent Systems, vol. 21, no. 4, pp. 443–451, 2006. doi:https://doi.org/10.1002/int.20131

I. Vlachos and G. Sergiadis, “Subsethood, entropy, and cardinality for interval-valued fuzzysets - an algebraic derivation,”Fuzzy Sets and Systems, vol. 158, pp. 1384–1396, 06 2007.doi: 10.1016/j.fss.2006.12.018

K. Qin and J. Yang, “Entropy of soft sets,” inInternational Conference on ComputerInformation Systems and Industrial Applications, 01 2015. doi: 10.2991/cisia-15.2015.213

Y. Jiang, Y. Tang, H. Liu, and Z. Chen, “Entropy on intuitionistic fuzzy soft sets and oninterval-valued fuzzy soft sets,”Information Sciences: an International Journal, vol. 240,pp. 95–114, 08 2013. doi: 10.1016/j.ins.2013.03.052

Z. Liu, K. Qin, and Z. Pei, “Similarity measure and entropy of fuzzy soft sets,”TheScien-tificWorldJournal, vol. 2014, p. 161607, 06 2014. doi: 10.1155/2014/161607

G. Selvachandran, P. Maji, R. Faisal, and A. Salleh, “Distance and distance induced intu-itionistic entropy of generalized intuitionistic fuzzy soft sets,”Applied Intelligence, vol. 47,07 2017. doi: 10.1007/s10489-016-0884-x

A. T M, S. John, and H. Garg, “A novel entropy measure of pythagorean fuzzy soft sets,”AIMS Mathematics, vol. 5, pp. 1050–1061, 01 2020. doi: 10.3934/math.20200073

A. Aydo ̆gdu, “Novel linear diophantine fuzzy information measures based decision makingapproach using extended vikor method,”IEEE Access, vol. PP, pp. 1–1, 01 2023. doi:10.1109/ACCESS.2023.3309913

A. Tsanas and A. Xifara, “Energy Efficiency,” UCI Machine Learning Repository, 2012,DOI: https://doi.org/10.24432/C51307.
Published
2025-02-04
How to Cite
KANNAN, Jeevitha et al. Entropy-Based Analysis Using Linear Diophantine Multi Fuzzy Soft Sets: A DEA Approach for Improved Decision Systems. Yugoslav Journal of Operations Research, [S.l.], feb. 2025. ISSN 2334-6043. Available at: <https://yujor.fon.bg.ac.rs/index.php/yujor/article/view/1319>. Date accessed: 11 feb. 2025. doi: https://doi.org/10.2298/YJOR240315055K.
Section
Research Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.