Pythagorean Fuzzy EOQ Model With Stock- and Hybrid Price-Dependent Demand Under Preservation Technology and Advance Payment

Abstract

This research implements the impact of an advance payment policy on inventory management while incorporating preservation technology to mitigate product deterioration. In a real scenario, the sum of the membership and non-membership degrees of uncertain parameters is greater than one. Hence, the primary objective is to optimize cycle time, selling price and maximum profit by utilizing an advanced payment policy, hybrid price-dependent demand rate under interval-valued Pythagorean fuzzy numbers to handle imprecise parameters. Two inventory models are developed: one incorporating preservation technology and another without it. Then, the corresponding fuzzy models are obtained under interval-valued Pythagorean fuzzy environment. A novel ranking method is employed to defuzzify the models and then the defuzzified models are solved by using analytic solution method of maximization problem. The models are validated through numerical examples by assuming hypothetical data, and the results are compared across crisp, Pythagorean fuzzy, and intuitionistic fuzzy frameworks. Key findings indicate that adopting preservation technology significantly improves profitability and reduces deterioration losses. Moreover, the Pythagorean fuzzy approach proves to be more effective in capturing uncertainty compared to intuitionistic fuzzy sets. These findings suggest that businesses can enhance inventory decision-making by leveraging advanced fuzzy techniques to optimize financial and operational outcomes.

References

U. Mishra, J. Z. Wu, and M. L. Tseng, “Effects of a hybrid-price-stock dependent demand on the optimal solutions of a deteriorating inventory system and trade credit policy on remanufactured product,” Journal of Cleaner Production, vol. 241, p. 118282, 2019. doi: 10.1016/j.jclepro.2019.118282

S. C. Das, A. K. Manna, M. S. Rahman, and A. K. Bhunia, “An inventory model for noninstantaneous deteriorating items with preservation technology and multiple credit periodsbased trade credit financing via particle swarm optimization,” Soft Computing, vol. 25, pp. 5365–5384, 2021. doi: 10.1007/s00500-020-05535-x

H. Barman, M. Pervin, and S. K. Roy, “Impacts of green and preservation technology investments on a sustainable epq model during covid-19 pandemic,” Rairo-Operations Research, vol. 56, no. 4, pp. 2245–2275, 2022. doi: 10.1051/ro/2022102

M. A. A. Khan, A. A. Shaikh, I. Konstantaras, A. K. Bhunia, and L. E. C´ ardenas-Barr´ on, “Inventory models for perishable items with advanced payment, linearly time-dependent holding cost and demand dependent on advertisement and selling price,” International Journal of Production Economics, vol. 230, p. 107804, 2020. doi: 10.1016/j.ijpe.2020.107804

A. Paul, M. Pervin, R. V. Pinto, S. K. Roy, N. Maculan, and G. W. Weber, “Effects of multiple prepayments and green investment on an epq model,” Journal of Industrial and Management Optimization, vol. 19, no. 9, pp. 6688–6704, 2022. doi: 10.3934/jimo.2022234

A. Goli, “Efficient optimization of robust project scheduling for industry 4.0: A hybrid approach based on machine learning and meta-heuristic algorithms,” International Journal of Production Economics, vol. 278, p. 109427, 2024. doi: 10.1016/j.ijpe.2024.109427

A.Goli, A.Ala, andS.Mirjalili, “A robust possibilistic programming framework for designing an organ transplant supply chain under uncertainty,” Annals of Operations Research, vol. 328, no. 1, pp. 493–530, 2023. doi: 10.1007/s10479-022-04829-7

A. Goli, “Integration of blockchain-enabled closed-loop supply chain and robust product portfolio design,” Computers & Industrial Engineering, vol. 179, p. 109211, 2023. doi: 10.1016/j.cie.2023.109211

R. E. Bellman and L. A. Zadeh, “Decision-making in a fuzzy environment,” Management Science, vol. 17, no. 4, pp. 14–164, 1970. doi: 10.1287/mnsc.17.4.B141

K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87–96, 1986. doi: 10.1016/S0165-0114(86)80034-3

R. R. Yager, “Pythagorean membership grades in multicriteria decision making,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 4, pp. 958–965, 2013. doi: 10.1109/TFUZZ.2013.2278989

Z. Yang and J. Chang, “Interval-valued pythagorean normal fuzzy information aggregation operators for multi-attribute decision making,” IEEE Access, vol. 8, pp. 51295–51314, 2020. doi: 10.1109/ACCESS.2020.2978976

S. C. Das, A. Zidan, A. K. Manna, A. A. Shaikh, and A. K. Bhunia, “An application of preservation technology in inventory control system with price dependent demand and partial backlogging,” Alexandria Engineering Journal, vol. 59, no. 3, pp. 1359–1369, 2020. doi: 10.1016/j.aej.2020.03.006

U. K. Khedlekar, L. Kumar, and M. Keswani, “A stochastic inventory model with pricesensitive demand, restricted shortage and promotional efforts,” Yugoslav Journal of Operations Research, vol. 33, no. 4, pp. 613–642, 2023. doi: 10.2298/YJOR220915010K

M. Pervin, S. K. Roy, and G. W. Weber, “Multi-item deteriorating two-echelon inventory model with price-and stock-dependent demand: A trade-credit policy,” Journal of Industrial and Management Optimization, vol. 15, no. 3, pp. 1345–1373, 2019. doi: 10.3934/jimo.2018098

P. M. T. Meisam, M. Godichaud, and L. Amodeo, “Disassembly eoq models with pricesensitive demands,” Applied Mathematical Modelling, vol. 88, pp. 810–826, 2020. doi: 10.1016/j.apm.2020.06.011

M. A. Halim, A. Paul, M. Mahmoud, B. Alshahrani, A. Y. M. Alazzawi, and G. M. Ismail, “An overtime production inventory model for deteriorating items with nonlinear price and stock dependent demand,” Alexandria Engineering Journal, vol. 60, no. 3, pp. 2779–2786, 2021. doi: 10.1016/j.aej.2021.01.019

S. Tiwari, C. K. Jaggi, A. K. Bhunia, A. A. Shaikh, and M. Goh, “Two-warehouse inventory model for non-instantaneous deteriorating items with stock-dependent demand and inflation using particle swarm optimization,” Annals of Operations Research, vol. 254, no. 1, pp. 401423, 2017. doi: 10.1007/s10479-017-2492-5

A. Gharaei, A. Amjadian, M. V. Sebt, and E. B. Tirkolaee, “Single-vendor single-buyer multiproduct economic production quantity problem with stochastic constraints: a modified generalized elimination method,” Journal of the Operational Research Society, pp. 1047–1065, 2024. doi: 10.1080/01605682.2024.2407467

A. Dadashi, B. Mirbaha, Z. Atan, and E. B. Tirkolaee, “Prioritizing highway safety improvement projects using a stochastic optimization model with robust constraints,” Soft Computing, pp. 1–14, 2023. doi: 10.1007/s00500-023-09255-w

A. Paul, M. Pervin, S. K. Roy, G. W. Weber, and A. Mirzazadeh, “Effect of pricesensitive demand and default risk on optimal credit period and cycle time for a deteriorating inventory model,” RAIRO-Operations Research, vol. 55, pp. S2575–S2592, 2021. doi: 10.1051/ro/2020108

A. H. M. Mashud, D. Roy, Y. Daryanto, and M. H. Ali, “A sustainable inventory model with imperfect products, deterioration, and controllable emissions,” Mathematics, vol. 8, no. 11, p. 2049, 2020. doi: 10.3390/math8112049

N. Shah, U. Chaudhari, and M. Y. Jani, “Optimal control analysis for service, inventory and preservation technology investment,” International Journal of Systems Science: Operations &Logistics, vol. 6, no. 2, pp. 130–142, 2019. doi: 10.1080/23302674.2018.1447167

S. Kumar, A. Kumar, and M. Jain, “Learning effect on an optimal policy for mathematical inventory model for decaying items under preservation technology with the environment of covid-19 pandemic,” Malaya Journal of Matematik, vol. 8, no. 4, pp. 1694–1702, 2020. doi: 10.26637/MJM0804/0063

M. A. A. Khan, A. A. Shaikh, G. C. Panda, and I. Konstantaras, “Two-warehouse inventory modelfor deteriorating items with partial backlogging and advance payment scheme,” RAIROOperations Research, vol. 53, no. 5, pp. 1691–1708, 2019. doi: 10.1051/ro/2018093

A. A. Shaikh, S. C. Das, A. K. Bhunia, G. C. Panda, and M. A. A. Khan, “A two-warehouse eoq model with interval-valued inventory cost and advance payment for deteriorating item under particle swarm optimization,” Soft Computing, vol. 23, no. 24, pp. 13531–13546, 2019. doi: 10.1007/s00500-019-03890-y

A. H. M. Mashud, H. M. Wee, B. Sarkar, and Y. H. C. Li, “A sustainable inventory system with the advanced payment policy and trade-credit strategy for a two-warehouse inventory system,” Kybernetes, vol. 50, no. 5, pp. 1321–1348, 2020. doi: 10.1108/K-01-2020-0052

A.H.M.Mashud,M.R.Hasan,Y.Daryanto, andH.M.Wee,“Aresilienthybridpaymentsupply chain inventory model for post covid-19 recovery,” Computers & Industrial Engineering, vol. 157, p. 107249, 2021. doi: 10.1016/j.cie.2021.107249

R. Mondal, S. Das, S. C. Das, A. A. Sheikh, and A. K. Bhunia, “Pricing strategies and advance payment-based inventory model with partially backlogged shortages under interval uncertainty,” International Journal of Systems Science: Operations & Logistics, vol. 10, no. 1, p. 2070296, 2023. doi: 10.1080/23302674.2022.2070296

E. Shekarian, E. U. Olugu, S. H. Abdul-Rashid, and N. Kazemi, “An economic order quantity model considering different holding costs for imperfect quality items subject to fuzziness and learning,” Journal of Intelligent & Fuzzy Systems, vol. 30, no. 5, pp. 2985–2997, 2019. doi: 10.3233/IFS-1519

H. Barman, M. Pervin, S. K. Roy, and G. W. Weber, “Back-ordered inventory model with inf lation in a cloudy-fuzzy environment,” Journal of Industrial and Management Optimization, vol. 17, no. 4, pp. 1913–1941, 2021. doi: 10.3934/jimo.2020052

P. Poswal, A. Chauhan, Y. K. Rajoria, R. Boadh, and A. Goel, “Fuzzy optimization model of two parameter weibull deteriorating rate with quadratic demand and variable holding cost under allowable shortages,” Yugoslav Journal of Operations Research, vol. 32, no. 4, pp. 453470, 2022. doi: 10.2298/YJOR220115021P

P. Kaur and A. Priya, “Selection of inventory policy under pythogrean fuzzy environment,” Science & Technology Asia, vol. 25, no. 1, pp. 62–71, 2020. doi: https://ph02.tcithaijo.org/index.php/SciTechAsia/article/view/240319

S. K. DeandG.C.Mahata, “Solution of an imperfect quality eoq model with backorder under fuzzy lock leadership game approach,” International Journal of Intelligent Systems, vol. 36, no. 1, pp. 421–446, 2021. doi: 10.1002/int.22305

M. M. Nayak, S. Patnaik, and M. Acharya, “An eoq model for defective items under pythagorean fuzzy environment,” Journal of Optimization in Industrial Engineering, vol. 15, no. 1, pp. 47–55, 2022. doi: 10.22094/JOIE.2021.1885939.1708

M. Rahaman, S. P. Mondal, S. Alam, and S. K. De, “A study of a lock fuzzy epq model with deterioration and stock and unit selling price-dependent demand using preservation technology,” Soft Computing, vol. 26, pp. 2721–2740, 2022. doi: 10.1007/s00500-021-06598-0

A.K.Mukherjee, G.Maity, J.Jablonsky, S. K. Roy, andG.W.Weber, “Asustainableinventory optimisation considering imperfect production under uncertain environment,” International Journal of Systems Science: Operations & Logistics, vol. 11, no. 1, p. 2379540, 2024. doi: 10.1080/23302674.2024.2379540

E. Alio˘ gulları, Y. S. T¨ urkan, E. C¸akmak, and E. B. Tirkolaee, “Evaluation of risk strategies for supply chain sustainability with interval-valued neutrosophic fuzzy edas,” Heliyon, vol. 10, no. 19, 2024. doi: 10.1016/j.heliyon.2024.e38607

S. K. De and S. S. Sana, “Backlogging eoq model for promotional effort and selling price sensitive demand-an intuitionistic fuzzy approach,” Annals of Operations Research, vol. 233, no. 1, pp. 57–76, 2015. doi: 10.1007/s10479-013-1476-3

T. Garai, D. Chakraborty, and T. K. Roy, “A multi-item generalized intuitionistic fuzzy inventory model with inventory level dependent demand using possibility mean, variance and covariance,” Journal of Intelligent & Fuzzy Systems, vol. 35, no. 1, pp. 1021–1036, 2018. doi: 10.3233/JIFS-1729

M.Pervin, S. K. Roy, andG.W.Weber, “Deteriorating inventory with preservation technology under price-and stock-sensitive demand,” Journal of Industrial & Management Optimization, vol. 16, no. 4, pp. 1585–1612, 2020. doi: 10.3934/jimo.2019019

A. K. Manna, A. A. Shaikh, and A. K. Bhunia, “An application of interval differential equation on a production inventory model with interval-valued demand via center-radius optimization technique and particle swarm optimization,” International Journal of Intelligent Systems, vol. 35, no. 8, pp. 1280–1326, 2020. doi: 10.1002/int.22254

S. S. Ali, H. Barman, R. Kaur, H. Tomaskova, and S. K. Roy, “Multi-product multi echelon measurements of perishable supply chain: fuzzy non-linear programming approach,” Mathematics, vol. 9, no. 17, p. 2093, 2021. doi: 10.3390/math9172093

S. Bardhan, H. Pal, and B. C. Giri, “Optimal replenishment policy and preservation technology investment for a non-instantaneous deteriorating item with stock-dependent demand,” Operational Research, vol. 19, pp. 347–368, 2019. doi: 10.1007/s12351-017-0302-0

A. H. M.Mashud, D. Roy, Y. Daryanto, and H. M. Wee, “Joint pricing deteriorating inventory model considering product life cycle and advance payment with a discount facility,” RAIROOperations Research, vol. 55, pp. S1069–S1088, 2021. doi: 10.1051/ro/2020106

L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965. doi: 10.1016/S0019-9958(65)90241-X

K. T. Atanassov and G. Gargov, “Interval-valued intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 31, pp. 343–349, 1989. doi: 10.1016/0165-0114(89)90205-4

A. Mondal and S. K. Roy, “Application of choquet integral in interval type 2 pythagorean fuzzy sustainable supply chain management under risk,” International Journal of Intelligent Systems, vol. 37, no. 1, pp. 217–263, 2021. doi: 10.1002/int.22623

S. K. Bharati and S. Singh, “Transportation problem under interval-valued intuitionistic fuzzy environment,” International Journal of Fuzzy Systems, vol. 20, no. 5, pp. 1511–1522, 2018. doi: 10.1007/s40815-018-0470-y

M. S. Rahman, M. A. A. Khan, M. A. Halim, T. A. Nofal, A. A. Shaikh, and Mahmoud, “Hybrid price and stock dependent inventory model for perishable goods with advance payment related discount facilities under preservation technology,” Alexandria Engineering Journal, vol. 60, no. 3, pp. 3455–3465, 2021. doi: 10.1016/j.aej.2021.01.045

A. Paul, M. Pervin, S. K. Roy, N. Maculan, and G. W. Weber, “A green inventory model with the effect of carbon taxation,” Annals of Operations Research, vol. 309, no. 1, pp. 233–248, 2022. doi: 10.1007/s10479-021-04143-8

H. Barman, M. Pervin, S. K. Roy, and G. W. Weber, “Analysis of a dual-channel green supply chain game-theoretical model under carbon policy,” International Journal of Systems Science: Operations & Logistics, vol. 10, no. 1, p. 2242770, 2023. doi: 10.1080/23302674.2023.2242770

A. Goli, A. Ala, and M. Hajiaghaei-Keshteli, “Efficient multi-objective meta-heuristic algorithms for energy-aware non-permutation flow-shop scheduling problem,” Expert Systems with Applications, vol. 213, p. 119077, 2023. doi: 10.1016/j.eswa.2022.119077

A. Goli and E. B. Tirkolaee, “Designing a portfolio-based closed-loop supply chain network for dairy products with a financial approach: Accelerated benders decomposition algorithm,” Computers & Operations Research, vol. 155, p. 106244, 2023. doi: 10.1016/j.cor.2023.106244

H. Barman, S. K. Roy, L. Sakalauskas, and G. W. Weber, “Inventory model involving reworking of faulty products with three carbon policies under neutrosophic environment,” Advanced Engineering Informatics, vol. 57, p. 102081, 2023. doi: 10.1016/j.aei.2023.102081

M. Kamran, S. Ashraf, S. K. Khan, A. H. Khan, H. Zardi, and S. Mehmood, “Integrated decision-making framework for hospital development: A single-valued neutrosophic probabilistic hesitant fuzzy approach with innovative aggregation operators,” Yugoslav Journal of Operations Research, vol. 34, no. 3, pp. 515–550, 2024. doi: 10.2298/YJOR230915034K
Published
2025-08-27
How to Cite
BARMAN, Haripriya et al. Pythagorean Fuzzy EOQ Model With Stock- and Hybrid Price-Dependent Demand Under Preservation Technology and Advance Payment. Yugoslav Journal of Operations Research, [S.l.], aug. 2025. ISSN 2334-6043. Available at: <https://yujor.fon.bg.ac.rs/index.php/yujor/article/view/1365>. Date accessed: 26 sep. 2025. doi: https://doi.org/10.2298/YJOR241115025B.
Section
Research Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.